Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 617(7960): 265-270, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165240

RESUMEN

Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.

2.
Phys Rev Lett ; 125(24): 240502, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412023

RESUMEN

High fidelity two-qubit gates exhibiting low cross talk are essential building blocks for gate-based quantum information processing. In superconducting circuits, two-qubit gates are typically based either on rf-controlled interactions or on the in situ tunability of qubit frequencies. Here, we present an alternative approach using a tunable cross-Kerr-type ZZ interaction between two qubits, which we realize with a flux-tunable coupler element. We control the ZZ-coupling rate over 3 orders of magnitude to perform a rapid (38 ns), high-contrast, low leakage (0.14±0.24%) conditional phase CZ gate with a fidelity of 97.9±0.7% as measured in interleaved randomized benchmarking without relying on the resonant interaction with a noncomputational state. Furthermore, by exploiting the direct nature of the ZZ coupling, we easily access the entire conditional phase gate family by adjusting only a single control parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA