Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 16(31): 7350-7358, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32785366

RESUMEN

We carry out molecular dynamics simulations of N gold alkylthiolated nanocrystals (0 ≤ N ≤ 29) contained in liquid droplets of octane, nonane and decane coexisting with its vapor. The equilibrium structures that result when all the solvent dries up consist of highly symmetric nanocrystal clusters with different degrees of icosahedral order that are thoroughly characterized. We show that the relaxation times follow two regimes, a first for small nanocrystal packing fraction, dominated by the diffusion of vapor molecules (Maxwell regime, relaxation times independent of N) and another, for larger packing fractions, where the solvent diffuses through the cluster (with relaxation times growing like N2/3). We discuss the connection to the assembly of superlattices, prediction of lattice constants and evaporation models.

2.
J Am Chem Soc ; 140(26): 8236-8245, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29905064

RESUMEN

We elucidate how nanocrystals "bond" to form ordered structures. For that purpose we consider nanocrystal configurations consisting of regular polygons and polyhedra, which are the motifs that constitute single component and binary nanocrystal superlattices, and simulate them using united atom models. We compute the free energy and quantify many body effects, i.e., those that cannot be accounted for by pair potential (two-body) interactions, further showing that they arise from coalescing vortices of capping ligands. We find that such vortex textures exist for configurations with local coordination number ≤6. For higher coordination numbers, vortices are expelled and nanocrystals arrange in configurations with tetrahedral or icosahedral order. We provide explicit formulas for the optimal separations between nanocrystals, which correspond to the minima of the free energies. Our results quantitatively explain the structure of superlattice nanocrystals as reported in experiments and reveal how packing arguments, extended to include soft components, predict ordered nanocrystal aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA