Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(16): 7241-7254, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38581386

RESUMEN

The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.

2.
Chem Commun (Camb) ; 60(26): 3531-3534, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38450709

RESUMEN

We report a noble-metal-free photocatalyst, ultrathin TiO2 with atomic layer thickness, which is a potential catalyst for CO2 photoreduction. An excellent liquid-product yield of 463.9 µmol gcat-1 in 8 h with 98% selectivity to alcohols was achieved, owing to sufficient surface defects favoring CO2 adsorption/activation.

3.
ACS Appl Mater Interfaces ; 16(17): 22089-22101, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651674

RESUMEN

Alloy catalysts have been reported to be robust in catalyzing various heterogeneous reactions due to the synergistic effect between different metal atoms. In this work, aimed at understanding the effect of the coordination environment of surface atoms on the catalytic performance of alloy catalysts, a series of PtxCu1-x alloy model catalysts supported on anatase-phase TiO2 (PtxCu1-x/Ti, x = 0.4, 0.5, 0.6, 0.8) were developed and applied in the classic photocatalytic CO2 reduction reaction. According to the results of catalytic performance evaluation, it was found that the photocatalytic CO2 reduction activity on PtxCu1-x/Ti showed a volcanic change as a function of the Pt/Cu ratio, the highest CO2 conversion was achieved on Pt0.5Cu0.5/Ti, with CH4 as the main product. Further systematic characterizations and theoretical calculations revealed that the equimolar amounts of Pt and Cu in Pt0.5Cu0.5/Ti facilitated the generation of more Cu-Pt-paired sites (i.e., the higher coordination number of Pt-Cu), which would favor a bridge adsorption configuration of CO2 and facilitate the electron transfer, thus resulting in the highest photocatalytic CO2 reduction efficiency on Pt0.5Cu0.5/Ti. This work provided new insights into the design of excellent CO2 reduction photocatalysts with high CH4 selectivity from the perspective of surface coordination environment engineering on alloy catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA