Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 402: 123491, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736178

RESUMEN

In this study, a promising process has been developed for selective recovery of valuable metals from spent lithium ion batteries (LIBs). First, reduction roasting which used spent anode powder as reduction agent and water immersion are applied to preferentially recover lithium. Subsequently, an ammonia leaching method is adopted to eff ;ectively separate nickel and cobalt from water immersion residue. Results indicate that Li2CO3, (NiO)m·(MnO)n, Ni, Co are the ultimate reduction products at 650 °C for 1 h with 5% anode powder. 82.2 % Li is preferentially leached via water immersion after reduction roasting and Li2CO3 products are obtained by evaporation crystallization. Thermodynamics shows that reducing ammonia leaching is feasible for water immersion residue. Amounts of 97.7 % Ni and 99.1 % Co can be selectively leached by NH3·H2O and (NH4)2SO3 while Mn remain in the residue as (NH4)2Mn(SO3)2·H2O, (NH4)2Mn(SO4)2·6H2O and (NH4)2Mn2(SO3)3 under the optimized conditions. Ammonia leaching kinetic show the activation energy of Ni and Co is 84.44 kJ/mol and 91.73 kJ/mol, which indicate the controlling steps are the chemical reaction. Summarily, the whole process achieves the maximum degree of selective recovery and reduces the environmental pollution caused by the multistep purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA