Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732351

RESUMEN

This study investigates, through a narrative review, the transformative impact of deep learning (DL) in the field of radiotherapy, particularly in light of the accelerated developments prompted by the COVID-19 pandemic. The proposed approach was based on an umbrella review following a standard narrative checklist and a qualification process. The selection process identified 19 systematic review studies. Through an analysis of current research, the study highlights the revolutionary potential of DL algorithms in optimizing treatment planning, image analysis, and patient outcome prediction in radiotherapy. It underscores the necessity of further exploration into specific research areas to unlock the full capabilities of DL technology. Moreover, the study emphasizes the intricate interplay between digital radiology and radiotherapy, revealing how advancements in one field can significantly influence the other. This interdependence is crucial for addressing complex challenges and advancing the integration of cutting-edge technologies into clinical practice. Collaborative efforts among researchers, clinicians, and regulatory bodies are deemed essential to effectively navigate the evolving landscape of DL in radiotherapy. By fostering interdisciplinary collaborations and conducting thorough investigations, stakeholders can fully leverage the transformative power of DL to enhance patient care and refine therapeutic strategies. Ultimately, this promises to usher in a new era of personalized and optimized radiotherapy treatment for improved patient outcomes.

2.
J Med Imaging Radiat Sci ; 55(2): 339-346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403521

RESUMEN

BACKGROUND: Virtual Environment Radiotherapy Training (VERT) is a virtual tool used in radiotherapy with a dual purpose: patient education and student training. This scoping review aims to identify the applications of VERT to acquire new skills in specific activities of Radiation Therapists (RTTs) clinical practice and education as reported in the literature. This scoping review will identify any gaps in this field and provide suggestions for future research. METHODS: In accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) extension for scoping reviews and Arskey and O'Malley framework, an electronic search was conducted to retrieve complete original studies, reporting the use and implementation of VERT for teaching skills to RTTs. Studies were searched in PubMed, EMBASE, and SCOPUS databases and included retrieved articles if they investigated the use of VERT for RTTs training. RESULTS: Of 251 titles, 16 articles fulfilled the selection criteria and most of the studies were qualitative evaluation studies (n=5) and pilot studies (n=4). The specific use of VERT for RTTs training was grouped into four categories (Planning CT, Set-up, IGRT, and TPS). CONCLUSION: The use of VERT was described for each category by examining the interaction of the students or trainee RTTs in performing each phase within the virtual environment and describing their perceptions. This system Virtual Reality (VR) enables the development of specific motor skills without interfering and pressurising clinical resources by using clinical equipment in a risk-free offline environment, improving the clinical confidence of students or trainee RTTs. However, even if VR can be integrated into the RTTs training with a great advantage, VERT has still not been embraced. This mainly due to the presence of significant issues and limitations, such as inadequate coverage within the current literature, software and hardware costs.


Asunto(s)
Realidad Virtual , Humanos , Radioterapia , Competencia Clínica
3.
Diagnostics (Basel) ; 14(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001224

RESUMEN

This study delves into the transformative potential of integrating augmented reality (AR) within imaging technologies, shedding light on this evolving landscape. Through a comprehensive narrative review, this research uncovers a wealth of literature exploring the intersection between AR and medical imaging, highlighting its growing prominence in healthcare. AR's integration offers a host of potential opportunities to enhance surgical precision, bolster patient engagement, and customize medical interventions. Moreover, when combined with technologies like virtual reality (VR), artificial intelligence (AI), and robotics, AR opens up new avenues for innovation in clinical practice, education, and training. However, amidst these promising prospects lie numerous unanswered questions and areas ripe for exploration. This study emphasizes the need for rigorous research to elucidate the clinical efficacy of AR-integrated interventions, optimize surgical workflows, and address technological challenges. As the healthcare landscape continues to evolve, sustained research efforts are crucial to fully realizing AR's transformative impact in medical imaging. Systematic reviews on AR in healthcare also overlook regulatory and developmental factors, particularly in regard to medical devices. These include compliance with standards, safety regulations, risk management, clinical validation, and developmental processes. Addressing these aspects will provide a comprehensive understanding of the challenges and opportunities in integrating AR into clinical settings, informing stakeholders about crucial regulatory and developmental considerations for successful implementation. Moreover, navigating the regulatory approval process requires substantial financial resources and expertise, presenting barriers to entry for smaller innovators. Collaboration across disciplines and concerted efforts to overcome barriers will be essential in navigating this frontier and harnessing the potential of AR to revolutionize healthcare delivery.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38882236

RESUMEN

Introduction: The radiotherapy workflow involves the collaboration of multiple professionals and the execution of several steps to results in an effective treatment. In this study, we described the clinical implementation of an electronic checklist, developed to standardize the process of the chart review prior to the first treatment fraction by the radiation therapists (RTTs). Materials and Methods: A customized electronic checklist was developed based on the recommendations of American Association of Physicists in Medicine (AAPM) Task Groups 275 and 315 and integrated into the Record and Verify System (RVS). The checklist consisted of 16 items requiring binary (yes/no) responses, with mandatory completion and review by RTTs prior to treatment. The utility of the checklist and its impact on workflow were assessed by analysing checklist reports, and by soliciting feedback to RTTs through an anonymized survey. Results: During the first trial phase, from June to November 2023, 285 checklists were completed with a 98% compilation rate and 94.4% review rate. Forty errors were detected, mainly due to missing signed treatment plans and absence of Beam's Eye View documentation. Ninety percent of detected errors were fixed before the treatment start. In 4 cases, the problem could not be fixed before the first fraction, resulting in a suboptimal first treatment. The feedback survey showed that RTTs described the checklist as useful, with minimal impact on workload, and supported its implementation. Discussion: The introduction of a customized electronic checklist improved the detection and correction of errors, thereby enhancing patient safety. The positive response from RTTs and the minimal impact on workflow underscore the value of the checklist as standard practice in radiotherapy departments.

5.
J Pers Med ; 14(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063923

RESUMEN

Optimizing work shifts in healthcare is crucial for maintaining high standards of service delivery and fostering professional development. This study delves into the emerging field of skill-oriented work shift optimization, focusing specifically on radiographers within the healthcare sector. Through the development of Skills Retention Monitoring (SRH), this research aims to enhance skill monitoring, workload management, and organizational performance. In this study, several key highlights emerged: (a) Introduction of the SRH tool: The SRH tool represents a resource-efficient solution that harnesses existing software infrastructure. A preliminary version, focusing on the radiographers' professional profile, was released, and after several months of use, it demonstrated effectiveness in optimizing work based on competency monitoring. (b) The SRH tool has thus demonstrated the capacity to generate actionable insights in the organizational context of radiographers. By generating weekly reports, the SRH tool streamlines activity management and optimizes resource allocation within healthcare settings. (c) Application of a Computer-Assisted Web Interviewing (CAWI) tool for pre-release feedback during a training event. (d) Strategic importance of a maintenance and monitoring plan: This plan, rooted in a continuous quality improvement approach and key performance indicators, ensures the sustained effectiveness of the SRH tool. (e) Strategic importance of a transfer plan: Involving professional associations and employing targeted questionnaires, this plan ensures the customization of the tool from the perspective of each profession involved. This is a crucial point, as it will enable the release of tool versions tailored to various professions operating within the hospital sector. As a side result, the tool could allow for a more tailored and personalized medicine both by connecting the insights gathered through the SRH tool with the right competencies for healthcare professionals and with individual patient data. This integration could lead to better-informed decision making, optimizing treatment strategies based on both patient needs and the specific expertise of the healthcare provider. Future directions include deploying the SRH tool within the Pisa hospital network and exploring integration with AI algorithms for further optimization. Overall, this research contributes to advancing work shift optimization strategies and promoting excellence in healthcare service delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA