Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Glob Chang Biol ; 29(10): 2824-2835, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794475

RESUMEN

Elevated temperature (Te ) and drought often co-occur and interactively affect plant carbon (C) metabolism and thus the ecosystem C cycling; however, the magnitude of their interaction is unclear, making the projection of global change impacts challenging. Here, we compiled 107 journal articles in which temperature and water availability were jointly manipulated, and we performed a meta-analysis of interactive effects of Te and drought on leaf photosynthesis (Agrowth ) and respiration (Rgrowth ) at growth temperature, nonstructural carbohydrates and biomass of plants, and their dependencies on experimental and biological moderators (e.g., treatment intensity, plant functional type). Our results showed that, overall, there was no significant interaction of Te and drought on Agrowth . Te accelerated Rgrowth under well-watered conditions rather than under drought conditions. The Te × drought interaction on leaf soluble sugar and starch concentrations were neutral and negative, respectively. The effect of Te and drought on plant biomass displayed a negative interaction, with Te deteriorating the drought impacts. Drought induced an increase in root to shoot ratio at ambient temperature but not at Te . The magnitudes of Te and drought negatively modulated the Te × drought interactions on Agrowth . Root biomass of woody plants was more vulnerable to drought than that of herbaceous plants at ambient temperature, but this difference diminished at Te . Perennial herbs exhibited a stronger amplifying effect of Te on plant biomass in response to drought than did annual herbs. Te exacerbated the responses of Agrowth and stomatal conductance to drought for evergreen broadleaf trees rather than for deciduous broadleaf and evergreen coniferous trees. A negative Te × drought interaction on plant biomass was observed on species-level rather than on community-level. Collectively, our findings provide a mechanistic understanding of the interactive effects of Te and drought on plant C metabolism, which would improve the prediction of climate change impacts.


Asunto(s)
Carbono , Ecosistema , Carbono/metabolismo , Temperatura , Sequías , Dióxido de Carbono/análisis , Plantas/metabolismo
2.
Glob Chang Biol ; 29(7): 2030-2040, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36655297

RESUMEN

The sequence of physiological events during drought strongly impacts plants' overall performance. Here, we synthesized the global data of stomatal and hydraulic traits in leaves and stems of 202 woody species to evaluate variations in the water potentials for key physiological events and their sequence along the climatic gradient. We found that the seasonal minimum water potential, turgor loss point, stomatal closure point, and leaf and stem xylem vulnerability to embolism were intercorrelated and decreased with aridity, indicating that water stress drives trait co-selection. In xeric regions, the seasonal minimum water potential occurred at lower water potential than turgor loss point, and the subsequent stomatal closure delayed embolism formation. In mesic regions, however, the seasonal minimum water potential did not pose a threat to the physiological functions, and stomatal closure occurred even at slightly more negative water potential than embolism. Our study demonstrates that the sequence of water potentials for physiological dysfunctions of woody plants varies with aridity, that is, xeric species adopt a more conservative sequence to prevent severe tissue damage through tighter stomatal regulation (isohydric strategy) and higher embolism resistance, while mesic species adopt a riskier sequence via looser stomatal regulation (anisohydric strategy) to maximize carbon uptake at the cost of hydraulic safety. Integrating both aridity-dependent sequence of water potentials for physiological dysfunctions and gap between these key traits into the hydraulic framework of process-based vegetation models would improve the prediction of woody plants' responses to drought under global climate change.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Estomas de Plantas/fisiología , Hojas de la Planta/fisiología , Madera , Xilema , Árboles , Sequías
3.
Glob Chang Biol ; 20(1): 216-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24115380

RESUMEN

Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate.


Asunto(s)
Picea/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Algoritmos , Ciclo del Carbono , Clima , Manitoba , Temperatura
4.
Plant Physiol Biochem ; 206: 108223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043252

RESUMEN

Freeze-thaw cycles (FTCs) limit the distribution and survival of temperate tree species. Tree species with different wood types coexist in temperate forests and are subjected to the same FTCs. It is essential to understand how these trees differentially cope with xylem hydraulic failure induced by FTCs in the field. The branch hydraulic traits and nonstructural carbohydrate concentration of six coexisting tree species in a temperate forest were measured from mid-winter to early spring when the FTCs occurred from January to April. The percentage loss of hydraulic conductivity (PLC) was lower, and the water potential inducing a 50% loss of hydraulic conductivity (P50) was more negative in tracheid trees than in ring- and diffuse-porous trees, suggesting tracheid trees with narrow tracheid diameters showed less vulnerable to embolism and provided a lower degree of hydraulic failure during FTCs (stronger resistance). Ring-porous trees always showed lower hydraulic conductivity and higher PLC and P50, and these traits did not change during FTCs, suggesting that they might lose the hydraulic functions in winter and abandon the last year xylem. The P50 in diffuse-porous increased after several FTCs (frost fatigue), but that in tracheid species continued to increase (or even decrease) until the end of FTCs (69 cycles), suggesting that tracheid trees were less sensitive to frost fatigue than diffuse-porous trees. Soluble sugar concentration in deciduous trees negatively correlated with PLC at the end of FTCs, indicating that the effect of soluble sugar on refilling embolism occurred in early spring. While the soluble sugar concentration of deciduous trees decreased, that of two evergreen tracheid trees gradually increased, possibly due to the winter photosynthesis of evergreen leaves. Our results suggest temperate trees adopt different strategies to cope with the same FTCs. These findings enrich the understanding of plant hydraulics and carbon physiology in winter and provide insights into the response of different species coexisting in temperate forests under climate change.


Asunto(s)
Embolia , Árboles , Árboles/fisiología , Bosques , Madera , Xilema/fisiología , Agua , Hojas de la Planta/fisiología , Azúcares
5.
Tree Physiol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905287

RESUMEN

The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2°C and +4°C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP- regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25°C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit (VPD). This implies that the VPD-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59°C per 1.0°C rise in growth temperature. While +2°C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.

6.
Sci Total Environ ; 925: 171754, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494010

RESUMEN

Temperature sensitivity (Q10) of soil microbial respiration serves as a crucial indicator for assessing the response of soil organic carbon (SOC) to global warming. However, the biogeographic variation in Q10 remains inconsistent. In this study, we examined Q10 and its potential drivers in nine old-growth mixed broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forests (the climax community of Asian temperate mixed forest) under a wide range of climatic conditions. We found that stand characteristics (arbuscular mycorrhizal tree basal area to ectomycorrhizal tree basal area ratio and root to shoot ratio) contributed to soil C sequestration by facilitating the accumulation of soil recalcitrant C components. Contrary to the C quality-temperature hypothesis, Q10 was not correlated with C quality (soil C to nitrogen ratio and recalcitrant C to labile C ratio). Soil mineral protection parameters (Fe/Al oxides) had negative effect on Q10 because they inhibited microbial activities by decreasing substrate accessibility. Additionally, soils with high microbial biomass C and microbial biomass C to soil organic C ratio had high Q10. Overall, understanding the complex relationships among Q10, mineral protection, and microbial attributes on a spatial scale is essential for accurately predicting soil C cycling in forest ecosystems.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Carbono/análisis , Suelo , Temperatura , Bosques , Micorrizas/química , Minerales , Microbiología del Suelo , China
7.
Plants (Basel) ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931090

RESUMEN

Leaf nutrient resorption is a critical process in plant nutrient conservation during leaf senescence. However, the ecological mechanisms underlying the large variability in nitrogen (NRE) and phosphorous (PRE) resorption efficiencies among trees remain poorly understood. We conducted a comprehensive study on NRE and PRE variability using 61 tree individuals of 10 temperate broad-leaved tree species. Three potentially interrelated intrinsic ecological mechanisms (i.e., leaf senescence phenology, leaf pigments, and energy residual) were verified. We found that a delayed leaf senescence date, increased degradation of chlorophylls and carotenoids, biosynthesis of anthocyanins, and reduced nonstructural carbohydrates were all positively correlated with NRE and PRE at the individual tree level. The intrinsic factors affecting resorption efficiency were ranked in decreasing order of importance: leaf pigments > energy residual > senescence phenology. These factors explained more variability in NRE than in PRE. Our findings highlight the significance of these three ecological mechanisms in leaf nutrient resorption and have important implications for understanding how nutrient resorption responds to climate change.

8.
Nat Commun ; 15(1): 5329, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909059

RESUMEN

Soil organic carbon (SOC) persistence is predominantly governed by mineral protection, consequently, soil mineral-associated (MAOC) and particulate organic carbon (POC) turnovers have different impacts on the vulnerability of SOC to climate change. Here, we generate the global MAOC and POC maps using 8341 observations and then infer the turnover times of MAOC and POC by a data-model integration approach. Global MAOC and POC storages are 975 964 987 Pg C (mean with 5% and 95% quantiles) and 330 323 337 Pg C, while global mean MAOC and POC turnover times are 129 45 383 yr and 23 5 82 yr in the top meter, respectively. Climate warming-induced acceleration of MAOC and POC decomposition is greater in subsoil than that in topsoil. Overall, the global atlas of MAOC and POC turnover, together with the global distributions of MAOC and POC stocks, provide a benchmark for Earth system models to diagnose SOC-climate change feedback.

9.
Environ Monit Assess ; 185(1): 833-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22411032

RESUMEN

The nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North-South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.3 to 29.5 kg N ha(-1) a(-1), increasing from north to south along NSTEC. The relatively high average ratio of ammonium to nitrate in deposition (1.83) indicated that the N deposition along the NSTEC in China mostly originated in farming and animal husbandry rather than in industry and vehicle activities. For seasonal variability, the DIN deposition showed a single peak in the growing season in the northern part of NSTEC, while, in the southern part, it exhibited double-peaks in the early spring and the mid-summer, respectively. On the annual scale, the DIN deposition variations of the eight sites could be mainly explained by precipitation and the distances from forest stations to provincial capital cities.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Árboles , Contaminación del Aire/estadística & datos numéricos , China
10.
Sci Total Environ ; 856(Pt 1): 158961, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155049

RESUMEN

The rhizosphere is one of the most dynamic interfaces on the Earth. Understanding the magnitudes of rhizosphere effects (RE, difference in bio-physicochemical properties between rhizosphere and bulk soils) on soil microbial communities and their moderators is important for studying on below-ground carbon (C) cycling. A comprehensive meta-analysis was conducted to quantify the REs on soil microbial biomass, community structure, respiration, and C-degrading enzymes. We found that REs on soil C and nutrients, total microbial biomass, the abundance of specific microbial groups, fungi to bacteria ratio, respiration, and C-degrading enzymes were positive, but the magnitudes were varied with biomes, plant functional types, and mycorrhizal types. REs on microbial biomass, respiration, and C-degrading enzymes increased with the increase of mean annual temperature and mean annual precipitation, but decreased with the increase of soil clay, C, nitrogen (N), and phosphorus (P) contents. The REs on microbial biomass and respiration also increased as the REs on soil C:N:P increased. Compared with bulk soil, per unit rhizosphere soil C supported more microbial biomass, per unit of which respired more C, leading to faster C decomposition in rhizosphere. Our findings indicate that the increase in microbial biomass, co-metabolism induced by labile and energy-rich organic C of root exudates, and overflow respiration induced by stoichiometric imbalance together contribute to the enhanced C decomposition in rhizosphere. The global pattern of REs on soil microbial communities is critical to revealing the plant-microbe-soil interactions in terrestrial ecosystems.


Asunto(s)
Microbiota , Micorrizas , Rizosfera , Suelo/química , Microbiología del Suelo , Nitrógeno/análisis , Carbono/análisis , Micorrizas/química
11.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1483-1490, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37694409

RESUMEN

Variations and trade-offs between leaf stoichiometric characteristics and photosynthetic traits are indicative of ecological adaptation strategies of plants and their responses to environment changes. In a common garden of Maoershan, we measured leaf stoichiometric characteristics (carbon content (C), nitrogen content (N), phosphorus content (P), C/N, C/P, N/P) and photosynthetic traits (maximum net photosynthetic rate (Amax), maximum electron transport rate (Jmax), maximum carboxylation rate (Vmax)) of Larix gmelinii from 17 geographical provenances. We examined the provenance differences in stoichiometric characteristics and photosynthetic traits, and analyzed their trade-offs and influencing factors. The results showed leaf stoichiometric characteristics and photosynthetic traits significantly differed among provenances. The climatic factors of seed-source sites explained 54.8% and 67.2% of the variation in stoichiometric characteristics and photosynthetic traits, respectively. Aridity index (AI) of seed-source sites was positively correlated with C, N, P, Amax, Jmax, Vmax, but negatively with C/N, C/P, and N/P. Results of redundancy analysis showed that stoichiometric characteristics accounted for 75.0% of the variation in photosynthetic traits. Amax, Jmax, Vmax were positively correlated with C, N, P, and negatively correlated with C/N, C/P, N/P. The provenance differences in stoichiometric characteristics, photosynthetic traits, and their synergistic relationship suggested the long-term adaptation of trees to the climate of seed-source sites. These findings were of great significance for understanding ecological adaptation strategies of trees in response to climate change.


Asunto(s)
Larix , Fotosíntesis , Transporte de Electrón , Aclimatación , Hojas de la Planta , Árboles
12.
Plant Physiol Biochem ; 197: 107658, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37001301

RESUMEN

Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (KmL and KmB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P50B, was more negative than P50L across the year. The values of VS (P50L minus P50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, KmL positively correlated with KmB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers.


Asunto(s)
Picea , Pinus , Tracheophyta , Árboles , Estaciones del Año , Agua , Hojas de la Planta
13.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1797-1805, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37694463

RESUMEN

For exploring the difference of root stoichiometric characteristics among diameter classes and provenances, we examined the contents and stoichiometric ratios of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) in three diameter classes of roots (0-1, 1-2 and 2-5 mm, respectively) of 39-year-old Larix gmelinii grown in a common garden. The results showed that root element contents and their stoichiometric ratios had significant difference among three diameter classes of roots. C content, C:N, C:P, C:K were the lowest, and N, P, K contents, N:P, and N:K were the highest in 0-1 mm diameter class roots. Compared with the 1-2 and 2-5 mm diameter class roots, 0-1 mm diameter class roots had different seasonal dynamics, which might be caused by the fact that 0-1 mm diameter class roots are absorptive roots and the other diameter class roots are transport roots. There was no provenance difference in C content among all diameter class roots, while significant provenance differences were found in N, K contents, C:N, and C:K in 0-1 mm diameter class roots, and great provenance differences for in P content, C:P, N:P, and N:K in 0-1 and 1-2 mm diameter class roots. N content, K content, C:P, N:P, and N:K in 0-1 mm diameter class roots had positive correlation with the aridity index of seed-source sites, while the P content, C:N and C:K had negative correlations. The stoichiometric characteristics were related with the diameter (or function) of roots, and had significant provenance differences in 0-1 mm (absorptive root) and 1-2 mm diameter class roots, which might be attributed to their genotypic adaptation to the environment of seed-source sites.


Asunto(s)
Larix , Aclimatación , Carbono , Genotipo , Nitrógeno
14.
Ying Yong Sheng Tai Xue Bao ; 33(4): 957-962, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35543047

RESUMEN

To reveal molecular mechanisms underlying photosynthesis responses of Dahurian larch (Larix gmelinii) to environmental changes, we used the high-throughput sequencing technology to sequence the transcriptome of larch leaves from four latitudinal sites with different environmental conditions, and compared differential expression genes (DEGs). The four sites from high- to low-latitude were Tahe (52°52' N), Songling (50°72' N), Heihe (49°22' N), and Dailing (47°08' N). A total of 282428811 clean reads were sequenced out, among which the abundace of DEGs were 16915, 18812, 28536, 20635, 29957 and 23617 for the Tahe-Songling, Tahe-Heihe, Tahe-Dailing, Songling-Heihe, Songling-Dailing, and Heihe-Dailing comparisons, respectively. The expression of nine Psb genes family (i.e., PsbB, PsbK, PsbO, PsbP, PsbQ, PsbS, PsbW, Psb27, and Psb28) encoding Photosystem Ⅱ and that of three genes (ATPF1A,atpA, ATPF1G, atpG, and ATPF1D, atpH) encoding F-type ATPase, which were involved in photosynthesis pathway, were significantly up-regulated with increasing environmental differences among the sites. A similar up-regulation pattern occurred for the expression of genes encoding glutamine synthetase (glnA, GLUL), nitrate reductase (NR), and carbonic anhydrase (cynT, can) that were involved in nitrogen metabolism pathway. The numbers of DEGs and up-regulated genes increased with the increases in environmental changes among the sites, resulting in inter-site divergence of photosynthetic capacity of larch trees.


Asunto(s)
Larix , Perfilación de la Expresión Génica , Larix/genética , Nitrógeno/metabolismo , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transcriptoma
15.
Tree Physiol ; 42(12): 2521-2533, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35921242

RESUMEN

To investigate the effects of climate warming on photosynthesis, Dahurian larch (Larix gmelinii Rupr.) trees from four sites (spanning ~ 5.5° in latitude and ~4 °C of warming) within the geographic range in China were transplanted into a common garden close to the warmer border in 2004. Throughout the growing season of 2018, the CO2- and temperature-response curves of the photosynthesis in the common garden and at the original sites were measured. It was discovered that warming treatment considerably increased the maximum net photosynthetic rate (Amax) by 23.4-35.3% depending on the sites, signifying that warming upregulated Amax with respect to the degree of warming. At 25 °C, warming enhanced the maximum Rubisco carboxylation rate (Vcmax), maximum electron transport rate (Jmax), and mass-based leaf nitrogen concentration (Nmass). The climate warming effect (CWE) on Amax was positively associated with the CWEs on Vcmax, Jmax and Nmass, which indicated that warming promoted Amax primarily via increasing carboxylation and photosynthetic electron transport rates and leaf nitrogen supply. The CWE in optimal photosynthetic temperature (Topt) was significant for the trees from the northern sites rather than the southern sites; however, the effect vanished for the trees transplanted to the common garden; this implied that Topt exhibited limited local thermal acclimation. Nevertheless, warming narrowed the temperature-response curve, the effect of which was positively associated with the warming magnitude. These findings implied that trees transplanted into warmer areas changed the photosynthetic optimum temperature and sensitivity. In summary, our results deepen the understanding of the underlying mechanisms of intraspecific responses of photosynthesis to temperature changes, including which of the modeling would improve the prediction of tree growth and forest carbon cycling under climate warming.


Asunto(s)
Larix , Árboles , Árboles/fisiología , Fotosíntesis , Temperatura , Aclimatación , Nitrógeno , Dióxido de Carbono , Hojas de la Planta
16.
Sci Total Environ ; 806(Pt 2): 150569, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597552

RESUMEN

Nitrogen (N) deposition is one of major environmental concerns and alters the microbial communities in the pedosphere. A central debate in governing microbial community is on the relative importance of deterministic (ecological selection) vs. stochastic processes (dispersal, drift, diversification or speciation), which consequently limited our understanding of microbial assembly in response to N addition. Here, we conducted a global analysis of high-throughput sequencing data to reveal the mechanisms of N-addition effects on soil microbial communities. The results show that N addition significantly shifted the microbial community structure and promoted microbial beta diversity, particularly in the N-limited ecosystems. Changes in microbial structure and beta diversity increased significantly as the N addition rate, study duration, and the degree of soil acidification increased. The stochastic processes are more important than the deterministic processes for microbial community assembly, while N addition significantly increase the importance of stochastic processes whether the phylogenetic relationship is considered or not. Overall, the current study highlights the important of ecological stochasticity in regulating microbial assembly under N deposition scenarios.


Asunto(s)
Microbiota , Suelo , Nitrógeno , Filogenia , Microbiología del Suelo , Procesos Estocásticos
17.
Ying Yong Sheng Tai Xue Bao ; 33(1): 1-8, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35224919

RESUMEN

The increases in frequency and intensity of drought worldwide has seriously affected tree growth, and even led to widespread forest mortality. Leaf traits estimated from pressure-volume (PV) curve provide key leaf physiological information that reflects the drought tolerance of trees. However, it is uncertain that which PV parameter performs the best at local scale. Here, we measured five PV traits (including TLP, π0, ε, Cleaf, and RWCtlp) and two leaf structural traits (specific leaf area and leaf density) in 20 tree species (16 angiosperms and 4 gymnosperms) in a temperate mixed forest at the Maoershan Forest Ecosystem Research Station, Northeast China. The objectives of this study were to search the best indicators of leaf drought tolerance at local scale, and to explore the correlation between PV traits and leaf structural traits. We found that angiosperms had significantly greater RWCtlp and lower Cleaf than gymnosperms, indicating that RWCtlp and Cleaf might be the good indicators of leaf drought tolerance in temperate mixed forest in Northeast China. Within angiosperm species, TLP and π0 were significantly and negatively correlated with leaf density, but positively correlated with specific leaf area; while ε was negatively correlated with specific leaf area. However, the opposite trends between PV traits and leaf structural traits were observed between gymnosperms and angiosperms, which might be attributed to their differences in drought response and adaptation strategies.


Asunto(s)
Sequías , Árboles , China , Ecosistema , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología
18.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2068-2076, 2022 Aug.
Artículo en Zh | MEDLINE | ID: mdl-36043812

RESUMEN

In situ measurement of albedo is important for estimating ecosystem energy budget and its remote sensing application. However, the measurement method of albedo on sloping land is limited and the difference in temporal variation in albedo between visible and near-infrared bands remains unclear. Taking a deciduous broad-leaved forest at the Maoershan Forest Ecological Station in Northeast China as an example, we explored the temporal variation and influencing factors of albedo for three bands: incident and reflected solar radiation (SR, 300-2800 nm), photosynthetically active radiation (PAR, 400-700 nm), and near infrared radiation (NIR, 700-2800 nm). The temporal difference in albedo measurements between the two installation methods of radiometers was analyzed. The results showed that, in sunny days, the diurnal variation in SR and NIR albedo had an asymmetric U-shaped curve around the local noon, while PAR increased from sunrise to sunset. In cloudy days, the albedo decreased sharply and then tended to be stable. The measurement with parallel sensors to the slope increased the daily mean value of albedo, but reduced the daily asymmetry of SR and NIR. For the whole growing season, the maximum albedos of SR, NIR and PAR in horizontal measurement were 0.16, 0.27 and 0.11, respectively, and the minimums were 0.07, 0.11 and 0.03, respectively. Albedo in the SR and NIR wavebands increased first and then decreased (the peak value was in July), while PAR showed a contrasting pattern. SR albedo was mainly controlled by NIR rather than PAR. The contribution of the influencing factors was ranked in the order of normalized difference vegetation index (61.7%-78.5%, representing leaf area index) > solar altitude angle (15.4%-36.9%) > clearness index (0.4%-36.9%).


Asunto(s)
Ecosistema , Bosques , Hojas de la Planta , Estaciones del Año , Luz Solar
19.
Sci Total Environ ; 762: 143077, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33131880

RESUMEN

Defoliation resulting from herbivory, storm, drought, and frost may seriously impair tree growth and forest production. However, a comprehensive evaluation of defoliation impacts on tree carbon (C) assimilation and growth has not been conducted. We performed a meta-analysis of a dataset that included 1562 observations of 40 tree species from 50 studies worldwide, and evaluated defoliation impacts on photosynthetic capacity, C allocation, and tree growth. Our results showed that the reduced tree-level leaf area by defoliation outweighed the enhanced leaf-level photosynthesis, leading to a net reduction in tree C assimilation that was accompanied with decreases in nonstructural carbohydrates (NSCs) concentrations. The negative effects of defoliation on leaf NSCs decreased over time, but leaf production increased following defoliation, suggesting a shift in the C allocation towards shoots over roots. Defoliation intensity negatively affected tree growth, but post-defoliated recovery time did oppositely. The structure equation modelling showed that defoliation reduced tree growth mainly by indirectly reducing C assimilation (r = -0.4), and minorly by direct negative effect of defoliation intensity (r = -0.28) and positive effect of post-defoliated time (r = 0.33). These findings suggest that tree growth declines caused by defoliation are co-limited by C-source and sink activities, which provide a physiological basis of tree growth that is of significance in tree growth modelling and forest management under global changes.


Asunto(s)
Carbono , Árboles , Sequías , Fotosíntesis , Hojas de la Planta
20.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3053-3060, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34658189

RESUMEN

Fine roots play an important role in energy flow and substance cycling in forests. How-ever, the estimates of biomass, production and turnover of fine roots remain large uncertainties, and the mechanism underlying local-scale spatial variation in fine roots is still unclear. In a temperate secondary forest in the Maoer Mountain in Northeast China, we investigated the vertical distribution of fine root biomass and necromass at the 0-100 cm profile and the dynamics, production and turnover rate of fine root in 0-20 cm soil layer. The sequential coring (including the Decision Matrix and the Maximum-Minimum formula) and the ingrowth core (3 cm diameter and 5 cm diameter) were compared in estimating production and turnover rate of fine roots. Forest stand variables that might affect fine roots were also explored. The results showed that 76.8% of fine root biomass and 62.9% of necromass concentrated in the 0-20 cm soil layer, and that both decreased exponentially with increa-sing soil depth. The seasonal variation in both fine root biomass and necromass was not significant in 0-20 cm soil layer, which might be related to the negligible snowfall in winter and the extremely high precipitation in summer. There was no significant difference in the results of the estimated fine root production between two diameter ingrowth cores. After log-transformed, fine root production and turnover rate estimated by the Decision Matrix, the Maximum-Minimum formula and ingrowth cores were significantly different among methods. With the increases of soil nutrient concentrations, fine root biomass/fine root necromass ratio significantly increased, fine root necromass significantly decreased, whereas fine root biomass, productivity, and turnover rate were not related to soil nutrient. There was a significant positive correlation between fine root production and aboveground woody biomass increment in the previous-year but not current-year.


Asunto(s)
Bosques , Raíces de Plantas , Biomasa , China , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA