Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.242
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
2.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38640930

RESUMEN

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Asunto(s)
Hidroxicolesteroles , Lisosomas , Macrófagos , Microambiente Tumoral , Animales , Hidroxicolesteroles/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Microambiente Tumoral/inmunología , Factor de Transcripción STAT6/metabolismo , Adenilato Quinasa/metabolismo , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Reprogramación Metabólica
3.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882361

RESUMEN

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Asunto(s)
Deshidrocolesteroles/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Macrófagos/inmunología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Estomatitis Vesicular/inmunología , Células A549 , Animales , Línea Celular , Colesterol/metabolismo , Activación Enzimática/inmunología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Virus de la Estomatitis Vesicular Indiana/inmunología
4.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642822

RESUMEN

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Asunto(s)
Inflamación/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Masculino , Ratones , Persona de Mediana Edad , Sepsis/sangre , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo
5.
EMBO J ; 41(6): e108016, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35191555

RESUMEN

Interferon regulatory factor 3 (IRF3)-induced type I interferon (I-IFN) production plays key roles in both antiviral and autoimmune responses. IRF3 phosphorylation, dimerization, and nuclear localization are needed for its activation and function, but the precise regulatory mechanisms remain to be explored. Here, we show that the serine/threonine kinase AKT2 interacts with IRF3 and phosphorylates it on Thr207, thereby attenuating IRF3 nuclear translocation in a 14-3-3ε-dependent manner and reducing I-IFN production. We further find that AKT2 expression is downregulated in viral-infected macrophages or in monocytes and tissue samples from systemic lupus erythematosus (SLE) patients and mouse models. Akt2-deficient mice exhibit increased I-IFN induction and reduced mortality in response to viral infection, but aggravated severity of SLE. Overexpression of AKT2 kinase-inactive or IRF3-T207A mutants in zebrafish supports that AKT2 negatively regulates I-IFN production and antiviral response in a kinase-dependent manner. This negative role of AKT2 in IRF3-induced I-IFN production suggests that AKT2 may be therapeutically targeted to differentially regulate antiviral infection and SLE.


Asunto(s)
Interferón beta/biosíntesis , Lupus Eritematoso Sistémico , Pez Cebra , Animales , Antivirales , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pez Cebra/metabolismo
6.
EMBO J ; 40(19): e104549, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368973

RESUMEN

The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus-end-out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E-cadherin, a cell adhesion molecule, localizes to these NSC-neuropil junctions. Msps and a plus-end directed motor protein Kinesin-2 promote NSC cell cycle re-entry and target E-cadherin to NSC-neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps-Kinesin-2 pathway that governs NSC reactivation, in part, by targeting E-cad to NSC-neuropil contact sites.


Asunto(s)
Ciclo Celular/genética , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fase de Descanso del Ciclo Celular/genética , Animales , Biomarcadores , Diferenciación Celular/genética , Polaridad Celular , Extensiones de la Superficie Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/metabolismo
7.
Genome Res ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961776

RESUMEN

Competing endogenous RNAs (ceRNAs) are vital regulators of gene networks in mammals. The involvement of noncoding RNAs (ncRNAs) as ceRNA in genotypic sex determination (GSD) and environmental sex determination (ESD) in fish is unknown. The Chinese tongue sole, which has both GSD and ESD mechanisms, was used to map the dynamic expression pattern of ncRNAs and mRNA in gonads during sex determination and differentiation. Transcript expression patterns shift during the sex differentiation phase, and ceRNA modulation occurs through crosstalk of differentially expressed long ncRNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and sex-related genes in fish. Of note was the significant up-regulation of a circRNA from the sex-determining gene dmrt1 (circular RNA dmrt1) and a lncRNA, called AMSDT (which stands for associated with male sex differentiation of tongue sole) in Chinese tongue sole testis. These two ncRNAs both share the same miRNA response elements with gsdf, which has an up-regulated expression when they bind to miRNA cse-miR-196 and concurrent down-regulated female sex-related genes to facilitate testis differentiation. This is the first demonstration in fish that ceRNA crosstalk mediated by ncRNAs modulates sexual development and unveils a novel regulatory mechanism for sex determination and differentiation.

8.
Plant Physiol ; 195(1): 446-461, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38366578

RESUMEN

Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-yr field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Factores de Transcripción , Vitis , Vitis/genética , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Plantas Modificadas Genéticamente , Erysiphe/genética , Etilenos/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Plant Physiol ; 194(2): 918-935, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847157

RESUMEN

Organelle-derived nuclear DNAs, nuclear plastid DNAs (NUPTs), and nuclear mitochondrial DNAs (NUMTs) have been identified in plants. Most, if not all, genes residing in NUPTs/NUMTs (NUPGs/NUMGs) are known to be inactivated and pseudogenized. However, the role of epigenetic control in silencing NUPGs/NUMGs and the dynamic evolution of NUPTs/NUMTs with respect to organismal phylogeny remain barely explored. Based on the available nuclear and organellar genomic resources of wheat (genus Triticum) and goat grass (genus Aegilops) within Triticum/Aegilops complex species, we investigated the evolutionary fates of NUPTs/NUMTs in terms of their epigenetic silencing and their dynamic occurrence rates in the nuclear diploid genomes and allopolyploid subgenomes. NUPTs and NUMTs possessed similar genomic atlas, including (i) predominantly located in intergenic regions and preferential integration to gene regulation regions and (ii) generating sequence variations in the nuclear genome. Unlike nuclear indigenous genes, the alien NUPGs/NUMGs were associated with repressive epigenetic signals, namely high levels of DNA methylation and low levels of active histone modifications. Phylogenomic analyses suggested that the species-specific and gradual accumulation of NUPTs/NUMTs accompanied the speciation processes. Moreover, based on further pan-genomic analyses, we found significant subgenomic asymmetry in the NUPT/NUMT occurrence, which accumulated during allopolyploid wheat evolution. Our findings provide insight into the dynamic evolutionary fates of organelle-derived nuclear DNA in plants.


Asunto(s)
Aegilops , Triticum , Triticum/genética , Aegilops/genética , Núcleo Celular/genética , Genoma de Planta/genética , Evolución Molecular , ADN Mitocondrial/genética , Plantas/genética , Filogenia
10.
PLoS Biol ; 20(10): e3001834, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223339

RESUMEN

Neural stem cells (NSCs) divide asymmetrically to balance their self-renewal and differentiation, an imbalance in which can lead to NSC overgrowth and tumor formation. The functions of Parafibromin, a conserved tumor suppressor, in the nervous system are not established. Here, we demonstrate that Drosophila Parafibromin/Hyrax (Hyx) inhibits ectopic NSC formation by governing cell polarity. Hyx is essential for the asymmetric distribution and/or maintenance of polarity proteins. hyx depletion results in the symmetric division of NSCs, leading to the formation of supernumerary NSCs in the larval brain. Importantly, we show that human Parafibromin rescues the ectopic NSC phenotype in Drosophila hyx mutant brains. We have also discovered that Hyx is required for the proper formation of interphase microtubule-organizing center and mitotic spindles in NSCs. Moreover, Hyx is required for the proper localization of 2 key centrosomal proteins, Polo and AurA, and the microtubule-binding proteins Msps and D-TACC in dividing NSCs. Furthermore, Hyx directly regulates the polo and aurA expression in vitro. Finally, overexpression of polo and aurA could significantly suppress ectopic NSC formation and NSC polarity defects caused by hyx depletion. Our data support a model in which Hyx promotes the expression of polo and aurA in NSCs and, in turn, regulates cell polarity and centrosome/microtubule assembly. This new paradigm may be relevant to future studies on Parafibromin/HRPT2-associated cancers.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Polaridad Celular , Centrosoma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo
11.
EMBO Rep ; 24(9): e56624, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37440685

RESUMEN

The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Mamíferos/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(34): e2200106119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969751

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) has long been studied from many perspectives. As a multisubunit (large subunits [LSUs] and small subunits[SSUs]) protein encoded by genes residing in the chloroplast (rbcL) and nuclear (rbcS) genomes, RuBisCo also is a model for cytonuclear coevolution following allopolyploid speciation in plants. Here, we studied the genomic and transcriptional cytonuclear coordination of auxiliary chaperonin and chaperones that facilitate RuBisCo biogenesis across multiple natural and artificially synthesized plant allopolyploids. We found similar genomic and transcriptional cytonuclear responses, including respective paternal-to-maternal conversions and maternal homeologous biased expression, in chaperonin/chaperon-assisted folding and assembly of RuBisCo in different allopolyploids. One observation is about the temporally attenuated genomic and transcriptional cytonuclear evolutionary responses during early folding and later assembly process of RuBisCo biogenesis, which were established by long-term evolution and immediate onset of allopolyploidy, respectively. Our study not only points to the potential widespread and hitherto unrecognized features of cytonuclear evolution but also bears implications for the structural interaction interface between LSU and Cpn60 chaperonin and the functioning stage of the Raf2 chaperone.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa , Núcleo Celular/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
13.
Genes Immun ; 25(1): 7-13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092885

RESUMEN

Metformin is a synthetic biguanide proven to have beneficial effects against various human diseases. Research has confirmed that metformin exerts its effects by regulating the composition of intestinal microbiota. The composition of intestinal microbiota influences the efficacy of anti-PD-L1 immunotherapy. We assume that the regulation of metformin on intestinal microbiota could enhance the therapeutic efficiency of anti-PD-L1 antibodies. In Lewis lung cancer-bearing C57BL/6J mice, we find that metformin enhances PD-L1 antibody efficacy mainly depending on the existence of gut microbiota, and metformin increases the anti-tumor immunity through modulation of intestinal microbiota and affects the integrity of the intestinal mucosa. Antibiotic depletion of gut microbiota abolished the combination efficacy of PD-L1 antibody and metformin, implying the significance of intestinal microbiota in metformin's antitumor action. Combining anti-PD-L1 antibody with metformin provoked tumor necrosis by causing increased CD8 T-cell infiltration and IFN-γ expression. In conclusion, metformin could be employed as a microecological controller to prompt antitumor immunity and increase the efficacy of anti-PD-L1 antibodies. Our study provided reliable evidence that metformin could be synergistically used with anti-PD-L1 antibody to enhance the anti-cancer effect.


Asunto(s)
Microbioma Gastrointestinal , Metformina , Ratones , Animales , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Antígeno B7-H1 , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos , Línea Celular Tumoral
14.
Hum Genet ; 143(3): 263-277, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451291

RESUMEN

Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.


Asunto(s)
Mutación Missense , Defectos del Tubo Neural , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Defectos del Tubo Neural/genética , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Femenino , Masculino , Ratones , Animales
15.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871599

RESUMEN

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Células Caliciformes , Células Madre/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/metabolismo
16.
Small ; 20(19): e2308918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38149504

RESUMEN

Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.


Asunto(s)
Inteligencia Artificial , Biónica , Tacto , Humanos , Dispositivos Electrónicos Vestibles
17.
Hepatology ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37816045

RESUMEN

BACKGROUND AND AIMS: HCC is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc (Zn) deficiency. This study aims to understand how Zn could affect macrophage function and its application for HCC therapy. APPROACH AND RESULTS: Zn 2+ and the Zn transporter 1 (ZNT1, solute carrier family 30 member 1) were markedly reduced in intrahepatic macrophages from patients with HCC and from mouse liver tumors. Lower ZNT1 expression was associated with higher IL-6 production and shorter survival time in patients with HCC. Critically, ZNT1 regulated endosomal Zn 2+ levels for endocytosis of toll-like receptor 4 and programmed cell death ligand 1, thereby decreasing macrophage-induced inflammation and immunosuppression to protect from liver tumors. Myeloid-specific deletion of ZNT1 in mice increased chronic inflammation, liver fibrosis, tumor numbers, and size. Notably, Zn supplementation could reduce inflammation and surface programmed cell death ligand 1 expression in macrophages with the increased CD8 + T cell cytotoxicity, which synergized the antitumor efficacy of Sorafenib/Lenvatinib. CONCLUSIONS: Our study proposes a new concept that ZNT1 and Zn regulate endosome endocytosis to maintain surface receptors, and Zn supplements might be synergized with chemotherapy to treat inflammation-associated tumors, especially those containing programmed cell death ligand 1 + myeloid cells.

18.
Opt Express ; 32(11): 18997-19005, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859044

RESUMEN

In this work, a double-end diffusion bonded Nd:YVO4 self-Raman laser was designed to drive an intracavity, noncritically-phase-matched KTiOAsO4 (KTA) optical parametric oscillator (OPO). Both conversion efficiency and output power at 1.7 µm (the wavelength of the OPO signal field) were improved by effectively reducing the thermal lens effect and increasing the effective length of self-Raman medium. At an incident pump power of 15.4 W, the output power for 1742 nm output laser reached 2.16 W with a conversion efficiency of 14%, and the output having a pulse width of 10.5 ns and a pulse repetition frequency of 90 kHz. The competition between the OPO and cascaded Raman laser was observed when the incident pump power was above 12.4 W. The results highlight that in order to improve output power at 1742 nm, it is critical that both the cascaded, second-Stokes field at 1313 nm and the signal field generated at 1534 nm from the 1064 nm field driving the KTA-OPO be minimized, if not completely suppressed. This laser system combining the processes of stimulated Raman scattering and optical parametric oscillation for the generation of laser emission at 1742 nm may find significant application across a broad range of fields including biological engineering, laser therapy, optical coherence tomography and for the generation of mid-infrared laser wavelengths.

19.
Nat Chem Biol ; 18(10): 1056-1064, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879545

RESUMEN

SARS-CoV-2 entry into cells requires specific host proteases; however, no successful in vivo applications of host protease inhibitors have yet been reported for treatment of SARS-CoV-2 pathogenesis. Here we describe a chemically engineered nanosystem encapsulating CRISPR-Cas13d, developed to specifically target lung protease cathepsin L (Ctsl) messenger RNA to block SARS-CoV-2 infection in mice. We show that this nanosystem decreases lung Ctsl expression in normal mice efficiently, specifically and safely. We further show that this approach extends survival of mice lethally infected with SARS-CoV-2, correlating with decreased lung virus burden, reduced expression of proinflammatory cytokines/chemokines and diminished severity of pulmonary interstitial inflammation. Postinfection treatment by this nanosystem dramatically lowers the lung virus burden and alleviates virus-induced pathological changes. Our results indicate that targeting lung protease mRNA by Cas13d nanosystem represents a unique strategy for controlling SARS-CoV-2 infection and demonstrate that CRISPR can be used as a potential treatment for SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Animales , Catepsina L , Quimiocinas , Citocinas , Endopeptidasas , Pulmón/patología , Ratones , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , ARN Mensajero/genética , SARS-CoV-2
20.
Fish Shellfish Immunol ; 146: 109428, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325594

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Pez Cebra/genética , Transcriptoma , Hígado/metabolismo , Hepatocitos/metabolismo , Comunicación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA