Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280429

RESUMEN

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Asunto(s)
Factores de Transcripción Forkhead , Expresión Génica , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Biomarcadores/metabolismo , Técnicas de Inactivación de Genes , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/genética
2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37742050

RESUMEN

The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aprendizaje Automático , Medición de Riesgo
3.
Nature ; 572(7769): 341-346, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367039

RESUMEN

Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Señalización del Calcio , Calcio/metabolismo , Glicoesfingolípidos/metabolismo , Células Vegetales/metabolismo , Cloruro de Sodio/metabolismo , Arabidopsis/genética , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mutación , Estrés Salino/genética , Estrés Salino/fisiología , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo
4.
Biochem Biophys Res Commun ; 710: 149874, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581950

RESUMEN

Synaptic plasticity is crucial as it dynamically molds the strength and connectivity of neural circuits, influencing learning, memory, and the development of neurological disorders. Metformin, a widely prescribed anti-diabetic medication, has been shown to readily cross the blood-brain barrier (BBB) and the placenta. However, its prolonged impact on neuronal morphology and functions remains underexplored. In this study, we investigated the influence of metformin on dendrite development and synaptic plasticity in embryonic brains and primary rat cortical neurons. Our findings reveal a negative modulation of dendrite development by metformin, as evidenced by altered dendritic arborization, impaired dendritic spine morphology and disruptions in synaptic plasticity, suggesting a potential link between metformin exposure and aberrations in neuronal connectivity. In addition, we extend our insights to the impact of maternal metformin exposure on embryonic brains, revealing a significant inhibition of dendrite development in E18.5 rat brains. In conclusion, this study adds to the expanding knowledge base on the non-metabolic effects of metformin, emphasizing the significance of assessing its potential influence on both neuronal structure and function. There is an urgent need for further investigations into the enduring impact of prolonged metformin administration on the structural and functional aspects of neurons.


Asunto(s)
Plasticidad Neuronal , Neuronas , Embarazo , Femenino , Ratas , Animales , Plasticidad Neuronal/fisiología , Aprendizaje , Barrera Hematoencefálica , Dendritas
5.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37399189

RESUMEN

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilación , Biomasa , Biocombustibles/análisis , Plantas/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830399

RESUMEN

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Asunto(s)
Eicosanoides , Glucocorticoides , Inflamación , Lipogénesis , Hígado , Receptores de Glucocorticoides , Animales , Ratones , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
7.
J Immunol ; 208(6): 1378-1388, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35197328

RESUMEN

Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLß2, α4ß1, and α4ß7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLß2, α4ß1, and α4ß7 integrin activation in CD4+ T cells.


Asunto(s)
Talina , Proteínas de Unión al GTP rap1 , Animales , Sitios de Unión , Linfocitos T CD4-Positivos/metabolismo , Integrinas/metabolismo , Ratones , Talina/genética , Talina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
8.
Int Urogynecol J ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700729

RESUMEN

Overactive bladder (OAB) is a highly prevalent condition with significant associated comorbidities. Current management guidelines suggest the utilization of anticholinergic medication as a second line after nonpharmacological treatment. Tibial nerve stimulation (TNS), which has previously been thought to have been expensive and inaccessible, was relegated to a third-line therapy. However, given the recently discovered association between anticholinergic medication use and dementia as well as the recent FDA approval of transcutaneous tibial nerve stimulation (TTNS), there may be a need to revisit management guidelines. In this commentary, we identify the two types of TNS, percutaneous tibial nerve stimulation (PTNS) and TTNS and compare them with anticholinergics. By considering their respective efficacies, side-effects profiles, and associated costs, we make the case in this commentary for an update to guidelines that includes TNS as second-line OAB management ahead of anticholinergic medication.

9.
Mol Cell Proteomics ; 21(1): 100176, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774759

RESUMEN

Urologic chronic pelvic pain syndrome (UCPPS) is a condition of unknown etiology characterized by pelvic pain and urinary frequency and/or urgency. As the proximal fluid of this syndrome, urine is an ideal candidate sample matrix for an unbiased study of UCPPS. In this study, a large, discovery-phase, TMT-based quantitative urinary proteomics analysis of 244 participants was performed. The participants included patients with UCPPS (n = 82), healthy controls (HC) (n = 94), and disparate chronic pain diseases, termed positive controls (PC) (n = 68). Using training and testing cohorts, we identified and validated a small and distinct set of proteins that distinguished UCPPS from HC (n = 9) and UCPPS from PC (n = 3). The validated UCPPS: HC proteins were predominantly extracellular matrix/extracellular matrix modifying or immunomodulatory/host defense in nature. Significantly varying proteins in the UCPPS: HC comparison were overrepresented by the members of several dysregulated biological processes including decreased immune cell migration, decreased development of epithelial tissue, and increased bleeding. Comparison with the PC cohort enabled the evaluation of UCPPS-specific upstream regulators, contrasting UCPPS with other conditions that cause chronic pain. Specific to UCPPS were alterations in the predicted signaling of several upstream regulators, including alpha-catenin, interleukin-6, epidermal growth factor, and transforming growth factor beta 1, among others. These findings advance our knowledge of the etiology of UCPPS and inform potential future clinical translation into a diagnostic panel for UCPPS.


Asunto(s)
Dolor Crónico , Enfermedad Crónica , Humanos , Dolor Pélvico/diagnóstico , Dolor Pélvico/etiología , Proteómica , Síndrome
10.
BMC Pulm Med ; 24(1): 160, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566026

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on global health and economies, resulting in millions of infections and deaths. This retrospective cohort study aimed to investigate the effect of antifibrotic agents (nintedanib and pirfenidone) on 1-year mortality in COVID-19 patients with acute respiratory failure. METHODS: Data from 61 healthcare organizations in the TriNetX database were analyzed. Adult patients with COVID-19 and acute respiratory failure were included. Patients with a pre-existing diagnosis of idiopathic pulmonary fibrosis before their COVID-19 diagnosis were excluded. The study population was divided into an antifibrotic group and a control group. Propensity score matching was used to compare outcomes, and hazard ratios (HR) for 1-year mortality were calculated. RESULTS: The antifibrotic group exhibited a significantly lower 1-year mortality rate compared to the control group. The survival probability at the end of the study was 84.42% in the antifibrotic group and 69.87% in the control group. The Log-Rank test yielded a p-value of less than 0.001. The hazard ratio was 0.434 (95% CI: 0.264-0.712), indicating a significant reduction in 1-year mortality in the antifibrotic group. Subgroup analysis demonstrated significantly improved 1-year survival in patients receiving nintedanib treatment and during periods when the Wuhan strain was predominant. DISCUSSION: This study is the first to demonstrate a survival benefit of antifibrotic agents in COVID-19 patients with acute respiratory failure. Further research and clinical trials are needed to confirm the efficacy of these antifibrotic agents in the context of COVID-19 and acute respiratory failure.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Insuficiencia Respiratoria , Adulto , Humanos , Antifibróticos , Estudios Retrospectivos , Prueba de COVID-19 , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/diagnóstico , Insuficiencia Respiratoria/tratamiento farmacológico , Piridonas/uso terapéutico , Resultado del Tratamiento
11.
Artículo en Inglés | MEDLINE | ID: mdl-38980216

RESUMEN

PURPOSE: To optimise the precision and efficacy of orthokeratology, this investigation evaluated a deep neural network (DNN) model for lens fitting. The objective was to refine the standardisation of fitting procedures and curtail subjective evaluations, thereby augmenting patient safety in the context of increasing global myopia. METHODS: A retrospective study of successful orthokeratology treatment was conducted on 266 patients, with 449 eyes being analysed. A DNN model with an 80%-20% training-validation split predicted lens parameters (curvature, power and diameter) using corneal topography and refractive indices. The model featured two hidden layers for precision. RESULTS: The DNN model achieved mean absolute errors of 0.21 D for alignment curvature (AC), 0.19 D for target power (TP) and 0.02 mm for lens diameter (LD), with R2 values of 0.97, 0.95 and 0.91, respectively. Accuracy decreased for myopia of less than 1.00 D, astigmatism exceeding 2.00 D and corneal curvatures >45.00 D. Approximately, 2% of cases with unique physiological characteristics showed notable prediction variances. CONCLUSION: While exhibiting high accuracy, the DNN model's limitations in specifying myopia, cylinder power and corneal curvature cases highlight the need for algorithmic refinement and clinical validation in orthokeratology practice.

12.
J Formos Med Assoc ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431481

RESUMEN

BACKGROUND: The incidence of pediatric hospitalizations has significantly increased since the spread of the omicron variant of COVID-19. Changes of characteristics in respiratory and neurological symptoms have been reported. We performed a retrospective, cross-sectional study to characterize the MRI change in children with an emphasis on the change of cerebral vasculatures. METHODS: We retrospectively collected clinical and MRI data of 31 pediatric patients with neurological symptoms during the acute infection and abnormalities on MRI during the outbreak of omicron variant from April 2022 to June 2022 in Taiwan. The clinical manifestations and MRI abnormalities were collected and proportion of patients with vascular abnormalities was calculated. RESULTS: Among 31 pediatric patients with post-COVID-19 neurological symptoms, MRI abnormalities were observed in 15 (48.4%), predominantly encephalitis/encephalopathy (73.3%). Notable MRI findings included focal diffusion-weighted imaging (DWI) hyperintensity in cerebral cortex and thalamus, diffuse cortical T2/DWI hyperintensity, and lesions in the medulla, pons, cerebellum, and splenium of corpus callosum. Vascular abnormalities were seen in 12 (80%) patients with MRI abnormalities, mainly affecting the middle cerebral arteries. The spectrum of neurological manifestations ranged from seizures to Alice in Wonderland syndrome, underscoring the diverse impact of COVID-19 on pediatric patients. CONCLUSION: A high proportion of vascular abnormalities was observed in pediatric patients with neurological involvements, suggesting that vascular involvement is an important mechanism of neurological manifestations in omicron variant infection.

13.
J Formos Med Assoc ; 123(7): 811-817, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38360490

RESUMEN

BACKGROUND: The SARS-CoV-2 virus has been a global public health threat since December 2019. This study aims to investigate the neurological characteristics and risk factors of coronavirus disease 2019 (COVID-19) in Taiwanese children, using data from a collaborative registry. METHODS: A retrospective, cross-sectional, multi-center study was done using an online network of pediatric neurological COVID-19 cohort collaborative registry. RESULTS: A total of 11160 COVID-19-associated emergency department (ED) visits and 1079 hospitalizations were analyzed. Seizures were the most common specific neurological symptom, while encephalitis and acute disseminated encephalomyelitis (ADEM) was the most prevalent severe involvement. In ED patients with neurological manifestations, severe neurological diagnosis was associated with visual hallucination, seizure with/without fever, behavior change, decreased GCS, myoclonic jerk, decreased activity/fatigue, and lethargy. In hospitalized patients with neurological manifestations, severe neurological diagnosis was associated with behavior change, visual hallucination, decreased GCS, seizure with/without fever, myoclonic jerk, fatigue, and hypoglycemia at admission. Encephalitis/ADEM was the only risk factor for poor neurological outcomes at discharge in hospitalized patients. CONCLUSION: Neurological complications are common in pediatric COVID-19. Visual hallucination, seizure, behavior change, myoclonic jerk, decreased GCS, and hypoglycemia at admission are the most important warning signs of severe neurological involvement such as encephalitis/ADEM.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Taiwán/epidemiología , COVID-19/complicaciones , COVID-19/epidemiología , Estudios Transversales , Niño , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Factores de Riesgo , Enfermedades del Sistema Nervioso/etiología , Hospitalización/estadística & datos numéricos , Servicio de Urgencia en Hospital/estadística & datos numéricos , Convulsiones/etiología , Convulsiones/epidemiología , Sistema de Registros
14.
Medicina (Kaunas) ; 60(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39064536

RESUMEN

Background and Objectives: Attentional bias (AB) for addictive substances is a feature of attention found in individuals with substance misuse or diagnosed with substance use disorders. When AB exists, the attention of the addicted individual may be quickly oriented to cues related to the addictive substance or be maintained on these cues for a longer time. AB toward opioids was found in Western samples of smokers with chronic noncancer pain. The level of AB was dose-responsive. However, similar studies in the Taiwanese population are lacking. This study compared the patterns of AB for opioid analgesics in Taiwanese participants with chronic noncancer pain to that of individuals without pain. This study aimed to investigate if AB toward opioids is presented in Taiwanese heavy smokers who are on long-term opioid therapy for pain control. Materials and Methods: Participants were grouped into chronic noncancer pain smokers, chronic pain nonsmokers, and smokers without pain, according to smoking habits and whether or not on long-term opioid therapy for pain control. Each participant completed demographic questionnaires, mood scales, and the opioid-related visual probe task. Differences in AB among the groups were compared using a three-way analysis of covariance controlling for daily cigarette consumption. Results: Chronic noncancer pain smokers (n = 17) and chronic pain nonsmokers (n = 16) displayed more severe levels of depression, anxiety, and pain, compared to smokers without pain (n = 28). Only did chronic pain nonsmokers show significant AB for opioid cues that were displayed for a short time. Analysis on reaction time found that smokers without pain consistently responded faster to the tasks. No difference in reaction time was found between the pain groups. Conclusions: The current study did not fully replicate findings from studies that were based in Western countries. Formulary availability and regulatory limitations might have affected patient's perception of prescription opioids in Taiwan. However, chronic pain nonsmokers exhibited initial orientation toward opioid-related cues when daily cigarette consumption was accounted for. According to previous research, this AB for shortly displayed opioid cues can be associated with the expectation of pain relief. The current finding also indicated general psychomotor retardation in individuals who were on long-term use of opioids.


Asunto(s)
Analgésicos Opioides , Sesgo Atencional , Dolor Crónico , Humanos , Masculino , Taiwán/epidemiología , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/psicología , Analgésicos Opioides/uso terapéutico , Femenino , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios , Fumadores/psicología , Fumadores/estadística & datos numéricos , Trastornos Relacionados con Opioides/psicología
15.
Plant J ; 111(5): 1383-1396, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35791282

RESUMEN

The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.


Asunto(s)
Arabidopsis , Tiamina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Difosfatos/metabolismo , Homeostasis , Monoéster Fosfórico Hidrolasas/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo
16.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33197936

RESUMEN

BACKGROUND: A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health. RESULTS: Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations. CONCLUSIONS: Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.


Asunto(s)
Envejecimiento , Aprendizaje Automático , Espectrometría de Masas , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/metabolismo , Modelos Biológicos , Infecciones Estafilocócicas/metabolismo , Adulto , Anciano , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Taiwán/epidemiología
17.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32672791

RESUMEN

Recent studies have demonstrated that the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) could be used to detect superbugs, such as methicillin-resistant Staphylococcus aureus (MRSA). Due to an increasingly clinical need to classify between MRSA and methicillin-sensitive Staphylococcus aureus (MSSA) efficiently and effectively, we were motivated to develop a systematic pipeline based on a large-scale dataset of MS spectra. However, the shifting problem of peaks in MS spectra induced a low effectiveness in the classification between MRSA and MSSA isolates. Unlike previous works emphasizing on specific peaks, this study employs a binning method to cluster MS shifting ions into several representative peaks. A variety of bin sizes were evaluated to coalesce drifted or shifted MS peaks to a well-defined structured data. Then, various machine learning methods were performed to carry out the classification between MRSA and MSSA samples. Totally 4858 MS spectra of unique S. aureus isolates, including 2500 MRSA and 2358 MSSA instances, were collected by Chang Gung Memorial Hospitals, at Linkou and Kaohsiung branches, Taiwan. Based on the evaluation of Pearson correlation coefficients and the strategy of forward feature selection, a total of 200 peaks (with the bin size of 10 Da) were identified as the marker attributes for the construction of predictive models. These selected peaks, such as bins 2410-2419, 2450-2459 and 6590-6599 Da, have indicated remarkable differences between MRSA and MSSA, which were effective in the prediction of MRSA. The independent testing has revealed that the random forest model can provide a promising prediction with the area under the receiver operating characteristic curve (AUC) at 0.8450. When comparing to previous works conducted with hundreds of MS spectra, the proposed scheme demonstrates that incorporating machine learning method with a large-scale dataset of clinical MS spectra may be a feasible means for clinical physicians on the administration of correct antibiotics in shorter turn-around-time, which could reduce mortality, avoid drug resistance and shorten length of stay in hospital in the future.


Asunto(s)
Bases de Datos Factuales , Aprendizaje Automático , Staphylococcus aureus Resistente a Meticilina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Estafilocócicas/sangre , Humanos
18.
J Urol ; 209(6): 1202-1209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36848055

RESUMEN

PURPOSE: Multimodal therapy has improved survival in genitourinary rhabdomyosarcoma, a rare pediatric cancer. However, little is reported regarding postoperative complications and long-term urinary and sexual function and quality of life. MATERIALS AND METHODS: We reviewed records from 1970-2018 to identify patients with genitourinary rhabdomyosarcoma of the bladder, prostate, pelvis, vagina, and uterus. We assessed modes of therapy, and if surgical, the type of resection, reconstruction, and reoperation. Primary outcomes included urinary continence, urinary tract infection occurrence, and stone formation. We also surveyed patients older than 18 years for urinary and sexual function. RESULTS: Fifty-one patients were identified for the post-treatment outcomes cohort. All received chemotherapy, 46 (90.2%) underwent surgery, and 34 (67%) received radiation. Twenty-nine patients (56.9%) received trimodal therapy, 17 (33.3%) received chemotherapy/surgery, and 5 (9.8%) received chemotherapy/radiation. Twenty-six had up-front radical surgery (with staged continence mechanism creation); these patients had higher rates of continence, similar rates of urinary tract infection, and higher rates of stone formation compared to those who were organ-spared. A third (4/12) of organ-spared patients underwent additional corrective surgery. Thirty patients with genitourinary rhabdomyosarcoma were surveyed and 14 responded to questionnaires. Overall, urinary complaints were mild, but both male and female respondents reported significant sexual dysfunction. CONCLUSIONS: Organ-sparing treatment was more likely to predispose patients to high rates of additional reconstructive surgery due to compromised urological function. In survey results, both men and women reported poor sexual function, but the majority of patients remained satisfied with their urinary function.


Asunto(s)
Neoplasias Pélvicas , Rabdomiosarcoma , Neoplasias de la Vejiga Urinaria , Niño , Humanos , Masculino , Femenino , Neoplasias de la Vejiga Urinaria/cirugía , Calidad de Vida , Vejiga Urinaria/cirugía , Cistectomía/métodos , Neoplasias Pélvicas/cirugía , Rabdomiosarcoma/cirugía
19.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R81-R95, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37212551

RESUMEN

The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Enfermedades Cardiovasculares/genética , Dieta Alta en Grasa , Hipertensión/patología , Hígado/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genética
20.
Hepatology ; 76(5): 1376-1388, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35313030

RESUMEN

BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.


Asunto(s)
Hepatopatías , Receptor de Insulina , Humanos , Ratones , Animales , Receptor de Insulina/metabolismo , Roedores , Cirrosis Hepática/patología , Hígado/patología , Hepatopatías/patología , Fibrosis , Proteínas Quinasas/metabolismo , Colágeno/metabolismo , Serina/metabolismo , Receptores con Dominio Discoidina/metabolismo , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA