Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8016): 484-492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811729

RESUMEN

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Asunto(s)
Bacterias , Bacteriófagos , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Bacterias/virología , Bacterias/genética , Bacterias/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Chryseobacterium/genética , Chryseobacterium/inmunología , Chryseobacterium/virología , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , División del ADN , Sitios Genéticos/genética , Modelos Moleculares , Dominios Proteicos
2.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38031990

RESUMEN

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Asunto(s)
Proteínas de Drosophila , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal/fisiología , Proteínas de Drosophila/metabolismo , Tunicamicina/metabolismo , Transactivadores/metabolismo , Proliferación Celular , Proteínas Nucleares/metabolismo , Homeostasis , Drosophila melanogaster/metabolismo
3.
Traffic ; 24(12): 552-563, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37642208

RESUMEN

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Asunto(s)
Proteínas de Drosophila , Animales , Polaridad Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Células Epiteliales/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115400

RESUMEN

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Intestinos/metabolismo , Prohibitinas/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Homeostasis/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/fisiología
5.
Anal Chem ; 96(26): 10800-10808, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904228

RESUMEN

Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.


Asunto(s)
Aptámeros de Nucleótidos , Vesículas Extracelulares , Oro , Espectrometría de Masas , Nanopartículas del Metal , Técnicas de Amplificación de Ácido Nucleico , Humanos , Aptámeros de Nucleótidos/química , Vesículas Extracelulares/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Nanopartículas del Metal/química , Oro/química , Espectrometría de Masas/métodos , Neoplasias , Molécula de Adhesión Celular Epitelial/metabolismo , Límite de Detección
6.
Anal Chem ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093913

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.

7.
Anal Chem ; 96(24): 10046-10055, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38845359

RESUMEN

Extracellular vesicle (EV) molecular phenotyping offers enormous opportunities for cancer diagnostics. However, the majority of the associated studies adopted biomarker-based unimodal analysis to achieve cancer diagnosis, which has high false positives and low precision. Herein, we report a multimodal platform for the high-precision diagnosis of bladder cancer (BCa) through a multispectral 3D DNA machine in combination with a multimodal machine learning (ML) algorithm. The DNA machine was constructed using magnetic microparticles (MNPs) functionalized with aptamers that specifically identify the target of interest, i.e., five protein markers on bladder-cancer-derived urinary EVs (uEVs). The aptamers were hybridized with DNA-stabilized silver nanoclusters (DNA/AgNCs) and a G-quadruplex/hemin complex to form a sensing module. Such a DNA machine ensured multispectral detection of protein markers by fluorescence (FL), inductively coupled plasma mass spectrometry (ICP-MS), and UV-vis absorption (Abs). The obtained data sets then underwent uni- or multimodal ML for BCa diagnosis to compare the analytical performance. In this study, urine samples were obtained from our prospective cohort (n = 45). Our analytical results showed that the 3D DNA machine provided a detection limit of 9.2 × 103 particles mL-1 with a linear range of 4 × 104 to 5 × 107 particles mL-1 for uEVs. Moreover, the multimodal data fusion model exhibited an accuracy of 95.0%, a precision of 93.1%, and a recall rate of 93.2% on average, while those of the three types of unimodal models were no more than 91%. The elevated diagnosis precision by using the present fusion platform offers a perspective approach to diminishing the rate of misdiagnosis and overtreatment of BCa.


Asunto(s)
Aprendizaje Automático , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina , Humanos , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/análisis , ADN/química , Plata/química , Aptámeros de Nucleótidos/química , Vesículas Extracelulares/química , Nanopartículas del Metal/química
8.
Anal Chem ; 96(28): 11595-11602, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38950152

RESUMEN

Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.


Asunto(s)
Hidrogeles , Técnicas Fotoacústicas , Dispositivos Electrónicos Vestibles , Concentración de Iones de Hidrógeno , Hidrogeles/química , Animales , Cicatrización de Heridas/efectos de los fármacos , Alcohol Polivinílico/química , Humanos
9.
Anal Chem ; 96(4): 1742-1749, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38221770

RESUMEN

Speciation analysis of arsenic in urine is essential for the studies of arsenic metabolism and biological effects, but the unstable arsenic species represented by MMAIII and DMAIII pose a huge challenge to analytical accuracy. Herein, a novel urine self-sampling (USS) kit combined with an automated preparation-sampler (APS) device is rationally designed and used for convenient analysis of arsenic metabolites by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The subject can collect urine into a sampling vial at home and use a homemade syringe to pump argon to displace oxygen in the vial, thereby inhibiting the oxidation of MMAIII and DMAIII. After USS and transportation, the sampling vial is loaded directly onto the APS device, where the urine sample can be automatically mixed with diluent, filtered, and loaded into HPLC-ICPMS for arsenic speciation analysis under anaerobic conditions. For a single sample, the sampling time and the analysis time are <8 and <18 min, respectively. The recoveries of MMAIII and DMAIII in urine over 24 h at 4 °C are 86 and 67%, surpassing the conventional sampling method by 28 and 67%, respectively. When the APS is coupled to HPLC-ICPMS, the detection limits of AsC, iAsIII, MMAIII, DMAV, MMAV, DMAIII, and iAsV are 0.03-0.10 µg L-1 with precisions of <10%. The present method provides a convenient and reliable tool for the storage and analysis of unstable arsenic species in urine and lays the foundation for studying the metabolic and biological effects of methylated trivalent arsenicals.


Asunto(s)
Arsénico , Arsenicales , Compuestos Organometálicos , Arsénico/análisis , Arsenicales/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos
10.
Anal Chem ; 96(18): 7155-7162, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652710

RESUMEN

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Asunto(s)
Arsénico , Electroforesis Capilar , Espectrometría de Masas , Microplásticos , Estómago , Arsénico/análisis , Humanos , Espectrometría de Masas/métodos , Electroforesis Capilar/métodos , Microplásticos/análisis , Estómago/química , Digestión , Modelos Biológicos
11.
Anal Chem ; 96(9): 3733-3738, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373274

RESUMEN

Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.


Asunto(s)
Plomo , Dispositivos Ópticos , Humanos , Peróxido de Hidrógeno , Análisis Espectral/métodos , Digestión
12.
J Neuroinflammation ; 21(1): 177, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033121

RESUMEN

BACKGROUND: Diabetes-associated cognitive impairment (DACI) poses a significant challenge to the self-management of diabetes, markedly elevating the risk of adverse complications. A burgeoning body of evidence implicates microglia as a central player in the pathogenesis of DACI. METHODS: We utilized proteomics to identify potential biomarkers in high glucose (HG)-treated microglia, followed by gene knockdown techniques for mechanistic validation in vitro and in vivo. RESULTS: Our proteomic analysis identified a significant upregulation of AKAP8L in HG-treated microglia, with concurrent dysregulation of autophagy and inflammation markers, making AKAP8L a novel biomarker of interest. Notably, the accumulation of AKAP8L was specific to HG-treated microglia, with no observed changes in co-cultured astrocytes or neurons, a pattern that was mirrored in streptozotocin (STZ)-induced diabetic mice. Further studies through co-immunoprecipitation and proximity ligation assay indicated that the elevated AKAP8L in HG-treated microglial cells interacts with the mTORC1. In the STZ mouse model, we demonstrated that both AKAP8L knockdown and rapamycin treatment significantly enhanced cognitive function, as evidenced by improved performance in the Morris water maze, and reduced microglial activation. Moreover, these interventions effectively suppressed mTORC1 signaling, normalized autophagic flux, mitigated neuroinflammation, and decreased pyroptosis. CONCLUSIONS: Our findings highlight the critical role of AKAP8L in the development of DACI. By interacting with mTORC1, AKAP8L appears to obstruct autophagic processes and initiate a cascade of neuroinflammatory responses. The identification of AKAP8L as a key mediator in DACI opens up new avenues for potential therapeutic interventions.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Autofagia , Disfunción Cognitiva , Diabetes Mellitus Experimental , Microglía , Enfermedades Neuroinflamatorias , Animales , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Autofagia/fisiología , Autofagia/efectos de los fármacos , Microglía/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Ratones Endogámicos C57BL
13.
Mol Cell Biochem ; 479(1): 63-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36988778

RESUMEN

Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1ß, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1ß, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.


Asunto(s)
Daño por Reperfusión Miocárdica , Choque Hemorrágico , Ratas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18 , Hirudinas/farmacología , Choque Hemorrágico/metabolismo , Volumen Sistólico , Nigericina/farmacología , Función Ventricular Izquierda , Caspasa 1/metabolismo , Transducción de Señal
14.
Analyst ; 149(15): 3910-3919, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910520

RESUMEN

MicroRNA is regarded as a significant biomarker for cancer diagnosis, disease process evaluation and therapeutic guidance, and dual-parameter measurement may contribute to a more accurate and realistic assessment. To meet the urgent need for simultaneous detection of multiple biomarkers, we combined three-dimensional DNAzyme motors with single molecule imaging technique to construct a convenient, intuitive, and sensitive approach for the simultaneous detection of dual miRNAs in the free state or in extracellular vesicles. Quantification of target miRNAs can be realized through the detection of amplified fluorescence signals generated by the target miRNA-initiated cleavage of fluorescent substrate strands by the DNAzyme motors. The practicability was systematically validated with microRNA-21-5p and microRNA-10b-5p as targets, acquiring a satisfactory sensitivity sufficient to detect low abundance targets at 0.5 or 1 pM to 100 pM. Besides, the extracellular vesicular miRNAs can be conveniently detected without extraction. The clinical applicability was verified with a series of extracellular vesicles from clinical samples, which exhibited good distinguishability between colorectal cancer patients and healthy donors. In addition to the advantages of good specificity and high sensitivity, the system has potential to be easily adapted by minor alteration of the DNA sequences and fluorophore sets for detection of multiple miRNAs and even other types of biomarkers such as proteins. Therefore, it shows promise to be widely applied in various fields such as early diagnosis of cancer and its prognostic assessment.


Asunto(s)
Neoplasias Colorrectales , ADN Catalítico , Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/análisis , MicroARNs/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN Catalítico/genética , Vesículas Extracelulares/química , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Colorantes Fluorescentes/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Límite de Detección
15.
Environ Sci Technol ; 58(8): 3966-3973, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353415

RESUMEN

The occurrence of chlorinated derivatives of bisphenol S (Clx-BPS) and BPS was investigated in nine types of paper products (n = 125), including thermal paper, corrugated boxes, mail envelopes, newspapers, flyers, magazines, food contact paper, household paper, and business cards. BPS was found in all paper product samples, while Clx-BPS were mainly found in thermal paper (from below the limit of detection (

Asunto(s)
Compuestos de Bencidrilo , Papel , Humanos , Alimentos , Comercio
16.
Anal Chem ; 95(4): 2375-2381, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36652587

RESUMEN

Dried blood spot (DBS) detection has the advantages of small blood collection, convenience, and reliability, which provides a possibility for large-scale evaluation of arsenic exposure in human population. Herein, a facile Lego-spinner pretreatment device is rationally designed for speciation analysis of arsenic in DBSs by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). In the mixing mode of the Lego-spinner, the magnetic stir bar in the centrifuge tube rotates under a magnetic field to assist the dispersive extraction of arsenic species in the DBS with reagents. In the centrifugation mode of the Lego-spinner, the arsenic extract is separated from the blood matrix for the subsequent IC-ICP-MS analysis. For the DBS prepared from 80 µL of whole blood, the whole pretreatment operation can be completed within 25 min. The detection limits of arsenobetaine, arsenite, dimethylarsenate, monomethylarsonate, and arsenate in the DBS are 0.09-0.15 µg L-1, and precisions are <11%. The concentrations of these five arsenic species are highly correlated between whole blood and the DBS (r2 > 0.97), and Bland-Altman analysis indicates that the concentration difference of arsenic species between whole blood and the DBS is within ±20%. The DBS sampling approach can effectively preserve arsenic species for at least 30 days at 4 °C, and the contents of arsenic species in the DBS prepared from capillary blood are in a reasonable agreement with those of venous whole blood (gold standard). This Lego-spinner provides a handy and efficient tool for fast extraction of arsenic species in DBSs, facilitating the in-depth study of arsenic migration and transformation in the human body.


Asunto(s)
Arsénico , Humanos , Arsénico/análisis , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Análisis Espectral , Cromatografía por Intercambio Iónico/métodos , Pruebas con Sangre Seca , Cromatografía Líquida de Alta Presión/métodos
17.
Anal Chem ; 95(26): 9813-9821, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37354088

RESUMEN

Field and sensitive analysis of mercury species in seafood is helpful to assess the risk of human exposure to mercury, but the cumbersome pretreatment process is time-consuming and laborious. Herein, a simple one-pot pretreatment system is designed for extraction, separation, and enrichment of inorganic mercury (Hg(II)) and methylmercury (MeHg) in fish, and coupled to dielectric barrier discharge (DBD) microplasma optical emission spectrometry (OES). Both Hg(II) and MeHg species in fish can be effectively extracted by tetramethylammonium hydroxide under ultrasound, then separated from the fish matrix by vapor generation and photochemical vapor generation, and finally enriched on the activated carbon electrode tips. Mercury trapped on the activated carbon electrode tips can be rapidly released to produce OES under the DBD microplasma excitation for quantitative analysis. The pretreatment and analysis of a batch of 12 samples are completed within 50 min, and the extraction efficiency of total mercury is up to 90% for 100 mg of freeze-dried fish or 86% for 1 g of fresh fish. Under the optimized conditions, the detection limits are 2 µg kg-1 for Hg(II) and 1.2 µg kg-1 for MeHg in freeze-dried fish, and precisions are 3.2% for Hg(II) and 3.9% for MeHg. The present method is applied to the analysis of the certified reference material and real marine fishes, giving rise to spiked recoveries of 95-103%. The present system hardly leads to MeHg and Hg(II) transforming into each other during extraction, providing a simple, convenient, and low-cost analytical tool to evaluate the risk of mercury species in fish.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Humanos , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Carbón Orgánico , Análisis Espectral , Peces
18.
Anal Chem ; 95(32): 12152-12160, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535000

RESUMEN

Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.


Asunto(s)
MicroARNs , Nanopartículas , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Expresión Génica , Fluorescencia , Resistencia a Medicamentos
19.
Anal Chem ; 95(4): 2523-2531, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36657481

RESUMEN

Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.


Asunto(s)
Exosomas , Humanos , Exosomas/química , Microfluídica/métodos , Técnicas de Cultivo de Célula , Proteínas/análisis
20.
Anal Chem ; 95(11): 5087-5094, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36892999

RESUMEN

In situ visualization of lipid composition diversity in lipid droplets (LDs) is essential for decoding lipid metabolism and function. However, effective probes for simultaneously localizing and reflecting the lipid composition of LDs are currently lacking. Here, we synthesized full-color bifunctional carbon dots (CDs) that can target LDs as well as respond to the nuance in internal lipid compositions with highly sensitive fluorescence signals, due to lipophilicity and surface state luminescence. Combined with microscopic imaging, uniform manifold approximation and projection, and sensor array concept, the capacity of cells to produce and maintain LD subgroups with varying lipid composition was clarified. Moreover, in oxidative stress cells, LDs with characteristic lipid compositions were deployed around mitochondria, and the proportion of LD subgroups changed, which gradually disappeared when treated with oxidative stress therapeutics. The CDs demonstrate great potential for in situ investigation of the LD subgroups and metabolic regulations.


Asunto(s)
Gotas Lipídicas , Mitocondrias , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Metabolismo de los Lípidos , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA