Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409266

RESUMEN

Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSP40 , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Prolina/metabolismo , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico , Dedos de Zinc
3.
Protoplasma ; 258(2): 371-378, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33108535

RESUMEN

Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Herbicidas/uso terapéutico , Piridazinas/uso terapéutico , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Herbicidas/farmacología , Humanos , Piridazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA