Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38401112

RESUMEN

Objective: This study aims to investigate the therapeutic efficacy of patent foramen ovale (PFO) closure in migraine patients with a massive right-to-left shunt (RLS) and white matter lesions (WMLs). Methods: The research focused on migraine patients with a massive RLS who underwent PFO closure in our hospital from June 2020 to June 2021. The study included 51 patients without WMLs (control group, CG) and 27 patients with WMLs (observation group, OG). A 12-month postoperative follow-up survey was conducted to assess headache episodes (frequency and duration), evaluated using the Headache Impact Test-6 (HIT-6) and the Pain Intensity Visual Analog Scale (VAS). The psychological state was also evaluated using the Hamilton Anxiety and Depression Scale (HAMA, HAMD). Adverse reactions during the follow-up were recorded. Results: No significant differences in perioperative and prognostic adverse reactions were observed between OG and CG (P > .05). Both groups showed a reduction in postoperative headache episodes and pain intensity. However, the OG exhibited higher frequency and duration of headache episodes and elevated HIT-6 and VAS scores, resulting in lower clinical efficacy (P < .05). Postoperatively, both groups demonstrated reductions in HAMA and HAMD, with CG showing lower scores compared to OG (P < .05). Logistic regression analysis identified the course of the disease, HIT-6 score, and the presence of WMLs as independent risk factors for the efficacy of PFO closure (P < .05). Conclusions: PFO closure proves effective and safe in treating migraine patients with RLS. However, for those with WMLs, clinical attention should be directed toward the treatment of WMLs.

2.
J Chem Inf Model ; 63(21): 6608-6618, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37899502

RESUMEN

In this study, we systematically studied the energy distribution of bioactive conformations of small molecular ligands in their conformational ensembles using ANI-2X, a machine learning potential, in conjunction with one of our recently developed geometry optimization algorithms, known as a conjugate gradient with backtracking line search (CG-BS). We first evaluated the combination of these methods (ANI-2X/CG-BS) using two molecule sets. For the 231-molecule set, ab initio calculations were performed at both the ωB97X/6-31G(d) and B3LYP-D3BJ/DZVP levels for accuracy comparison, while for the 8,992-molecule set, ab initio calculations were carried out at the B3LYP-D3BJ/DZVP level. For each molecule in the two molecular sets, up to 10 conformations were generated, which diminish the influence of individual outliers on the performance evaluation. Encouraged by the performance of ANI-2x/CG-BS in these evaluations, we calculated the energy distributions using ANI-2x/CG-BS for more than 27,000 ligands in the protein data bank (PDB). Each ligand has at least one conformation bound to a biological molecule, and this ligand conformation is labeled as a bound conformation. Besides the bound conformations, up to 200 conformations were generated using OpenEye's Omega2 software (https://docs.eyesopen.com/applications/ omega/) for each conformation. We performed a statistical analysis of how the bound conformation energies are distributed in the ensembles for 17,197 PDB ligands that have their bound conformation energies within the energy ranges of the Omega2-generated conformation ensembles. We found that half of the ligands have their relative conformation energy lower than 2.91 kcal/mol for the bound conformations in comparison with the global conformations, and about 90% of the bound conformations are within 10 kcal/mol above the global conformation energies. This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.


Asunto(s)
Algoritmos , Programas Informáticos , Rayos X , Ligandos , Conformación Molecular
3.
J Chem Inf Model ; 63(4): 1351-1361, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36786552

RESUMEN

In tauopathies such as Alzheimer's disease (AD), aberrant phosphorylation causes the dissociation of tau proteins from microtubules. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments and insoluble neurofibrillary tangles (NFTs). NFTs is a hallmark of AD, while oligomers are found to be the most toxic form of the tau aggregates. Therefore, understanding tau oligomerization with regard to abnormal phosphorylation is important for the therapeutic development of AD. In this study, we investigated the impact of phosphorylated Ser289, one of the 40 aberrant phosphorylation sites of full-length tau proteins, on monomeric and dimeric structures of tau repeat R2 peptides. We carried out intensive replica exchange molecular dynamics simulation with a total simulation time of up to 0.1 ms. Our result showed that the phosphorylation significantly affected the structures of both the monomer and the dimer. For the monomer, the phosphorylation enhanced ordered-disordered structural transition and intramolecular interaction, leading to more compactness of the phosphorylated R2 compared to the wild-type one. As to the dimer, the phosphorylation increased intermolecular interaction and ß-sheet formation, which can accelerate the oligomerization of R2 peptides. This result suggests that the phosphorylation at Ser289 is likely to promote tau aggregation. We also observed a phosphorylated Ser289-Na+-phosphorylated Ser289 bridge in the phosphorylated R2 dimer, suggesting an important role of cation ions in tau aggregation. Our findings suggest that phosphorylation at Ser289 should be taken into account in the inhibitor screening of tau oligomerization.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilación , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Péptidos/metabolismo , Polímeros
4.
Phys Chem Chem Phys ; 26(1): 85-94, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38053433

RESUMEN

Accurately predicting solvation free energy is the key to predict protein-ligand binding free energy. In addition, the partition coefficient (log P), which is an important physicochemical property that determines the distribution of a drug in vivo, can be derived directly from transfer free energies, i.e., the difference between solvation free energies (SFEs) in different solvents. Within the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) 9 challenge, we applied the Poisson-Boltzmann (PB) surface area (SA) approach to predict the toluene/water transfer free energy and partition coefficient (log Ptoluene/water) from SFEs. For each solute, only a single conformation automatically generated by the free software Open Babel was used. The PB calculation directly adopts our previously optimized boundary definition - a set of general AMBER force field 2 (GAFF2) atom-type based sphere radii for solute atoms. For the non-polar SA model, we newly developed the solvent-related molecular surface tension parameters γ and offset b for toluene and cyclohexane targeting experimental SFEs. This approach yielded the highest predictive accuracy in terms of root mean square error (RMSE) of 1.52 kcal mol-1 in transfer free energy for 16 small drug molecules among all 18 submissions in the SAMPL9 blind prediction challenge. The re-evaluation of the challenge set using multi-conformation strategies based on molecular dynamics (MD) simulations further reduces the prediction RMSE to 1.33 kcal mol-1. At the same time, an additional evaluation of our PBSA method on the SAMPL5 cyclohexane/water distribution coefficient (log Dcyclohexane/water) prediction revealed that our model outperformed COSMO-RS, the best submission model with RMSEPBSA = 1.88 versus RMSECOSMO-RS = 2.11 log units. Two external log Ptoluene/water and log Pcyclohexane/water datasets that contain 110 and 87 data points, respectively, are collected for extra validation and provide an in-depth insight into the error source of the PBSA method.

5.
Molecules ; 28(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38138524

RESUMEN

The "Long-COVID syndrome" has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<-6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Quimasas , Síndrome Post Agudo de COVID-19 , Simulación de Dinámica Molecular , Flavonoides/farmacología , Aprendizaje Automático , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
6.
Angew Chem Int Ed Engl ; 62(52): e202315805, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37973617

RESUMEN

The transport behavior of ions in the nanopores has an important impact on the performance of the electrochemical devices. Although the classical Transmission-Line (TL) model has long been used to describe ion transport in pores, the boundary conditions for the applicability of the TL model remain controversial. Here, we investigated the transport kinetics of different ions, within nanochannels of different lengths, by using transient single-particle imaging with temporal resolution up to microseconds. We found that the ion transport kinetics within short nanochannels may deviate significantly from the TL model. The reason is that the ion transport under nanoconfinement is composed of multi basic stages, and the kinetics differ much under different stage domination. With the shortening of nanochannels, the electrical double layer (EDL) formation would become the "rate-determining step" and dominate the apparent ion kinetics. Our results imply that using the TL model directly and treating the in-pore mobility as an unchanged parameter to estimate the ion transport kinetics in short nanopores/nanochannels may lead to orders of magnitude bias. These findings may advance the understanding of the nanoconfined ion transport and promote the related applications.

7.
Angew Chem Int Ed Engl ; 61(12): e202117177, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35014150

RESUMEN

Single-nanoparticle electrochemistry offers electrochemical behaviors of individual entities beyond the ensemble system. An electric double layer (EDL) exists on any charged particle-liquid interface because of counter-ion accumulation, while direct measuring of the interfacial ion migration remains a challenge. Herein, a plasmonic-based transient microscopic method, with a temporal resolution of 1-2 µs, was demonstrated to directly track the ion migration dynamics on single charged nanoparticles. We found that the dynamics of EDL formation might deviate significantly from the prediction made by using the classical resistance-capacitance (RC) model under nanoscale and transient conditions. Under ultrafast charging, due to the limit migration rate of ions in the solution, the actual time scale of the EDL formation could be up to 5 times slower than the predicted value from the RC model. We then proposed a new theoretical model to describe the transient dynamics of EDL formation. These results may expand our current knowledge about nano-electrochemistry and transient electrochemistry.

8.
Clin Oral Investig ; 25(10): 5955-5965, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33797635

RESUMEN

OBJECTIVES: This prospective, randomized, split-mouth clinical trial assessed the 3-year clinical performance of a highly filled flowable composite and a conventional paste-type composite in non-carious cervical lesions (NCCLs). MATERIALS AND METHODS: A total of 84 NCCLs in 27 subjects were included in this split-mouth design study and randomly divided into two groups: a highly filled flowable composite Clearfil Majesty ES Flow group (ES, n = 42) and a conventional paste-type composite Majesty group (MJ, n = 42). Clearfil SE Bond was used following the manufacturer's instructions. The restorations were evaluated at baseline (BL) and 1, 2, and 3 years using FDI (World Dental Federation) criteria. Data were analysed by a paired chi-squared test for intergroup comparisons and the Friedman test for intragroup comparisons (α = 0.05). RESULTS: Both groups had a 97.3% retention rate at the 3-year evaluation. The acceptable scores (FDI scores 1-3) for each criterion exhibited no significant difference between the MJ and ES groups at any time point (p = 1.00). The marginal adaptation performance of ES was significantly better than that of MJ at every evaluation point (p < 0.05). CONCLUSIONS: The 3-year clinical performance of ES in NCCLs was similar to that of MJ. When the restorations were clinically acceptable, ES showed better marginal adaptation than MJ. CLINICAL RELEVANCE: Compared with conventional paste-type composites, highly filled flowable composites showed similar clinical performance and better marginal adaptation for restoring NCCLs after 3 years. TRIAL REGISTRATION: TRN: ChiCTR1900028484 . Date of registration: December 22, 2019, retrospectively registered.


Asunto(s)
Adaptación Marginal Dental , Restauración Dental Permanente , Resinas Compuestas , Humanos , Boca , Estudios Prospectivos , Cementos de Resina
9.
J Integr Plant Biol ; 63(1): 126-145, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32678945

RESUMEN

Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.


Asunto(s)
Frutas/metabolismo , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Neurodegener Dis ; 19(5-6): 204-210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32485710

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by intracellular α-synuclein (α-Syn) deposition. Alternation of the α-Syn expression level in plasma or erythrocytes may be used as a potential PD biomarker. However, no studies have compared their prognostic value directly with the same cohort. METHODS: The levels of α-Syn in plasma and erythrocytes, obtained from 45 PD patients and 45 control subjects, were measured with enzyme-linked immunosorbent assay. Then, correlation and receiver operating characteristic curve (ROC) analysis were performed to characterize the predictive power of erythrocytic and plasma α-Syn. RESULTS: Our results showed that α-Syn expression levels in both plasma and erythrocytes were significantly higher in PD patients than in control subjects (823.14 ± 257.79 vs. 297.10 ± 192.82 pg/mL, p < 0.0001 in plasma; 3,104.14 ± 143.03 vs. 2,944.82 ± 200.41 pg/mL, p < 0.001 in erythrocytes, respectively). The results of the ROC analysis suggested that plasma α-Syn exhibited better predictive power than erythrocytic α-Syn with a sensitivity of 80.0%, specificity of 97.7%, and a positive predictive value of 77.8%. The expression level of plasma α-Syn correlated well with the age of patients, H-Y stage, MoCA scale, and UPDRS motor scale. On the contrary, there was no correlation between erythrocytic α-Syn level and clinical parameters in this study. CONCLUSION: Our results suggest that plasma α-Syn could be a specific and sensitive potential diagnostic biomarker for PD.


Asunto(s)
Eritrocitos/metabolismo , Enfermedad de Parkinson/sangre , alfa-Sinucleína/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
12.
Carbohydr Polym ; 331: 121841, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388049

RESUMEN

Due to Cd(II) with highly toxic, persistent and bioaccumulative, the discharge of it into the environment brings serious pollution. Developing strategies that are efficient, low-cost, pollution-free and specific to removing Cd(II) from wastewater is therefore of great urgency and prime importance. A novel chitosan/sodium alginate ionic imprinting(IICA) hydrogels with specific adsorption capacity for Cd(II) was prepared through freeze-thaw and ion imprinting, and finally the colorimetric sensor (IICAS) was prepared via introducing Rhodamine B(RhB) and Victoria blue(VBB) by immersion to achieve visual detection of Cd(II). The IICA hydrogels with imprinted hole structure had higher adsorption capacity and better specific selectivity for Cd(II). As well as internal diffusion, coordination, ion exchange, and hydrogen bonding influenced the adsorption rate. Moreover, the IICAS exhibited good selective detection ability and linearity for Cd(II) with the fitted correlation coefficient (R2) = 0.98, limit of detection (LOD) = 35 nmol/L. Combined with the smartphone platform, portable and quantitative detection of Cd(II) can be achieved, Within the 0-100 mg/L range, R2 remained 0.94, and LOD was 75 nmol/L. This strategy of preparing a novel whole biomass IICAS integrating capture and visual detection provides a new insight into the construction of a promising candidate sensor for the removal and detection of Cd(II).


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Cadmio/química , Quitosano/química , Alginatos/química , Hidrogeles/química , Biomasa , Colorimetría , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
13.
Biomolecules ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927052

RESUMEN

Structure-based virtual screening utilizes molecular docking to explore and analyze ligand-macromolecule interactions, crucial for identifying and developing potential drug candidates. Although there is availability of several widely used docking programs, the accurate prediction of binding affinity and binding mode still presents challenges. In this study, we introduced a novel protocol that combines our in-house geometry optimization algorithm, the conjugate gradient with backtracking line search (CG-BS), which is capable of restraining and constraining rotatable torsional angles and other geometric parameters with a highly accurate machine learning potential, ANI-2x, renowned for its precise molecular energy predictions reassembling the wB97X/6-31G(d) model. By integrating this protocol with binding pose prediction using the Glide, we conducted additional structural optimization and potential energy prediction on 11 small molecule-macromolecule and 12 peptide-macromolecule systems. We observed that ANI-2x/CG-BS greatly improved the docking power, not only optimizing binding poses more effectively, particularly when the RMSD of the predicted binding pose by Glide exceeded around 5 Å, but also achieving a 26% higher success rate in identifying those native-like binding poses at the top rank compared to Glide docking. As for the scoring and ranking powers, ANI-2x/CG-BS demonstrated an enhanced performance in predicting and ranking hundreds or thousands of ligands over Glide docking. For example, Pearson's and Spearman's correlation coefficients remarkedly increased from 0.24 and 0.14 with Glide docking to 0.85 and 0.69, respectively, with the addition of ANI-2x/CG-BS for optimizing and ranking small molecules binding to the bacterial ribosomal aminoacyl-tRNA receptor. These results suggest that ANI-2x/CG-BS holds considerable potential for being integrated into virtual screening pipelines due to its enhanced docking performance.


Asunto(s)
Algoritmos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Ligandos , Unión Proteica , Sitios de Unión
14.
Med Oncol ; 40(6): 181, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202575

RESUMEN

Brain metastasis (BM) is a critical cause of morbidity and mortality in patients with breast cancer (BC). Compared with other cancer cells, BC cells (BCs) exhibit special features in the metastatic process. However, the underlying mechanisms are still unclear, especially the crosstalk between tumour cells and the microenvironment. To date, novel therapies for BM, including targeted therapy and antibody‒drug conjugates, have been developed. Due to an improved understanding of the blood‒brain barrier (BBB) and blood-tumour barrier (BTB), the development and testing of therapeutic agents in clinical phases have substantially increased. However, these therapies face a major challenge due to the low penetration of the BBB or BTB. As a result, researchers have increasingly focused on finding ways to promote drug penetration through these barriers. This review provides an updated overview of breast cancer brain metastases (BCBM) and summarizes the newly developed therapies for BCBM, especially drugs targeting the BBB or BTB.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Barrera Hematoencefálica , Neoplasias Encefálicas/patología , Microambiente Tumoral , Biología
15.
Front Oncol ; 13: 1272788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090481

RESUMEN

Background: Circulating tumor cells (CTCs) could serve as a predictive biomarker in breast cancer (BC). Due to its high heterogeneity, the diagnostic and prognostic values of CTC are challenging. Methods: We searched published studies from the databases of PubMed, Cochrane Library, Embase, and MEDLINE. The detection capability and hazard ratios (HRs) of CTCs were extracted as the clinical diagnosis and prognosis evaluation. Subgroup analyses were divided according to the detection methods, continents, treatment periods, therapeutic plans, and cancer stages. Results: In this study, 35 publications had been retrieved with 8,935 patients enrolled. The diagnostic efficacy of CTC detection has 74% sensitivity and 98% specificity. The positive CTC detection (CTC+) would predict worse OS and PFS/DFS in both mid-therapy and post-therapy (HROS, 3.09; 95% CI, 2.17-4.39; HRPFS/DFS, 2.06; 95% CI, 1.72-2.47). Moreover, CTC+ indicated poor survival irrespective of the treatment phases and sampling times (HROS, 2.43; 95% CI, 1.85-3.19; HRPFS/DFS, 1.82; 95% CI, 1.66-1.99). The CTC+ was associated with poor survival regardless of the continents of patients (HROS = 2.43; 95% CI, 1.85-3.19). Conclusion: Our study suggested that CTC+ was associated with a worse OS and PFS/DFS in the Asian population. The detection method, the threshold level of CTC+, therapeutic approaches, and sampling times would not affect its diagnostic and prognostic values.

16.
Neurol Ther ; 12(6): 2101-2119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792217

RESUMEN

INTRODUCTION: Smoking is an independent risk factor for the formation and rupture of intracranial aneurysms (IA). However, the underlying mechanism remains unclear. METHODS: In this study, we performed miRNA sequencing on plasma from 10 smoking patients with IA, 10 non-smoking patients with IA, and 10 healthy controls. The differentially expressed miRNAs (DE miRNAs) between smoking and non-smoking patients with IA were identified. Functional and pathway enrichment analysis is employed to investigate the potential functions of those DE miRNA target genes. The correlations with the clinical parameters were assessed using receiver operating characteristic curve (ROC) analysis. RESULTS: In total, we identified 428 DE miRNAs. Functional enrichment analysis showed the target genes were significantly enriched in biological aspects related to cell characteristics, such as cell cycle, cell differentiation, and cell migration. Pathway analysis showed DE miRNAs mainly enriched in the PI3K-Akt signaling pathway, Focal adhesion, and JAK-STAT signaling pathway. The expressions of miR-574-5p, miR-151a-3p, and miR-652-3p correlated well with aneurysm parameters. The AUC of miR-574-5p, miR-151a-3p, and miR-652-3p were 97%, 92%, and 99%, respectively. CONCLUSION: Our study indicated that smoking significantly altered the plasma miRNA profile in patients with IA. The expression of miR-574-5p, miR-151a-3p, and miR-652-3p correlated with aneurysm parameters, which may play a significant role in the formation and rupture of IA.

17.
Oncol Lett ; 26(2): 361, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37545620

RESUMEN

Brain metastases (BMs) usually develop in patients with non-small cell lung cancer. In addition to systemic therapy, radiation therapy and surgery, anti-programmed cell death-ligand 1 (PD-L1) therapy is another promising clinical anticancer treatment modality. However, the optimal timing and drug-drug interactions of anti-PD-L1 therapy with other combined treatments remain to be elucidated. Treatment with anti-PD-L1 therapy is associated with an increased risk of radionecrosis (RN) regardless of tumor histology. The present study described a case of RN in a patient with lung adenocarcinoma and with BM who received anti-PD-L1 therapy. Before anti-PD-L1 treatment, the patient received whole brain radiotherapy. During durvalumab treatment, the intracranial metastases regressed. The progression of intracranial lesions 9 months later prompted a second-line of therapy with PD-L1 inhibitor durvalumab and stereotactic radiotherapy (SRT). Despite stereotactic irradiation, the lesions progressed further, leading to surgical resection. On examination, RN was detected, but there was no evidence of metastatic lung cancer. The aim of the present study was to present the longitudinal change in magnetic resonance imaging in RN following STR and anti-PD-L1 combined therapy. The atypical image of RN is conditionally important for making an accurate preoperative diagnosis.

18.
Open Life Sci ; 18(1): 20220757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38196515

RESUMEN

Evidence has proved that intracranial aneurysm (IA) formation and rupture might be closely related to inflammatory response and oxidative stress. Our objective was to evaluate the potential of CD36 and glutathione (GSH) as biomarkers for IA. In this study, the enzyme-linked immunosorbent assay was used to measure the plasma levels of CD36 and GSH in 30 IA patients and 30 healthy controls. Then, correlation analysis, receiver operating characteristic (ROC) curve, and logistic regression analysis were performed. The results showed that the plasma level of CD36 in IA patients was significantly higher than that in the control group (P < 0.0001), and plasma GSH was significantly lower compared with that in the control group (P < 0.0001). ROC analysis showed that CD36 and GSH had high sensitivity (90.0 and 96.6%) and specificity (96.6 and 86.6%) for IA diagnosis. The combined sensitivity and specificity achieved were 100 and 100%, respectively. The plasma levels of CD36 and GSH did not show a significant correlation with age, the Glasgow Coma Scale, Hunter-Hess score, aneurysm size, aneurysm height, aneurysm neck, and aspect ratio. The AUC of the logistic regression model based on CD36 and GSH was 0.505. Our results suggested that the combination of plasma CD36 and GSH could serve as potential biomarkers for IA rupture.

19.
Membranes (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35448324

RESUMEN

Increasing utilization of textiles has raised concern regarding the environmental impact brought by the textile manufacturing process and disposal of waste textiles. In our previous work, the dissolution of cotton waste through different solvent systems was demonstrated. Herein, this study aimed to further investigate the recycling of waste cotton-elastane fabrics using H2SO4, NaOH/urea, and LiCl/DMAc solvent systems. The structure of regenerated films was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy, and the properties of the regenerated films, including transparency, mechanical properties, water vapor permeability, and thermal stability, were investigated. The results revealed that all solvent systems could convert the waste cotton-elastane fabrics into regenerated films with the existence of different forms of elastane components. The elastane fibers were partially hydrolyzed in H2SO4 solvent and reduced the transparency of regenerated films, but they were well retained in NaOH/urea solvent and interrupted the structure of regenerated cellulose films. It is worth noting that the elastane fibers were completely dissolved in LiCl/DMAc solvent and formed a composite structure with cellulose, leading to obviously improved tensile strength (from 51.00 to 121.63 MPa) and water barrier property (from 3.50 × 10-7 to 1.03 × 10-7 g m-1 h-1 Pa-1). Therefore, this work demonstrates the possibility to directly recycle waste cotton-elastane fabrics through dissolution and regeneration, and the resultant films have potential applications as packaging materials.

20.
Front Neurol ; 13: 862916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903120

RESUMEN

Background: Aneurysms of the cerebral vasculature are relatively common, which grow unpredictably, and even small aneurysms carry a risk of rupture. Rupture of intracranial aneurysms (IA) is a catastrophic event with a high mortality rate. Pieces of evidence have demonstrated that smoking is closely related to the formation and rupture of IA. However, the biological effect of smoking cigarettes on the formation and rupture of IA is still underrepresented. Methods: The study protocol was prospectively registered in PROSPERO, registration number CRD42020203634. We performed a systematic search in PubMed and CNKI for studies exploring the biological effects of smoking on intracranial aneurysms published up to December 2021, and all studies were included in the analysis. The RevMan software was used for data analysis. Results: A total of 6,196 patients were included in 14 original articles in this meta-analysis. The risk of ruptured IA in the current smoking group was significantly higher than that in the non-smoking group, with statistical significance (RRtotal = 1.23, 95% CI: 1.11-1.37). After heterogeneity among cohorts was removed by the sensitivity analysis, there was still a statistically significant difference in the risk of ruptured IA between the smoking and non-smoking groups (RR total = 1.26, 95% CI: 1.18-1.34). There was no statistically significant difference in the risk of ruptured IA between the former smoking (smoking cessation) group and the non-smoking group (RRtotal = 1.09, 95% CI: 0.50-2.38). After heterogeneity among cohorts was removed by sensitivity analysis, there was still no statistically significant difference in the risk of ruptured IA between the former smoking (smoking cessation) group and the non-smoking group (RRtotal = 0.75, 95% CI: 0.47-1.19). The risk of the ruptured IA in the current smoking group was significantly higher than that in the former smoking (smoking cessation) group, with a statistically significant difference (RRtotal=1.42, 95%CI: 1.27-1.59). Conclusion: Although the biological effects of smoking on the formation and rupture of IA are unknown, this study suggests that current smoking is a risk factor for ruptured IA. Quitting smoking is very important for patients with IA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA