Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aging Clin Exp Res ; 36(1): 56, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441718

RESUMEN

BACKGROUND AND AIMS: Acute myocardial infarction (AMI) is one of the most prevalent illnesses endangering the elderly's health. The predictive nutritional index (PNI) has been shown in several studies to be a good predictor of nutritional prognosis. In this study, we explored the correlation between PNI during hospitalization and the outcome of elderly AMI patients. METHODS: Elderly AMI patients in the Cardiac Intensive Care Unit of Huadong Hospital from September 2017 to April 2020 were recruited for analysis. The clinical and laboratory examination data of subjects were retrieved. All enrolled patients were monitored following discharge. The primary clinical endpoints encompass major adverse cardiovascular events (MACEs) and Composite endpoint (MACEs and all-cause mortality). Survival analyses were conducted via the Kaplan-Meier and the log-rank analyses, and the Cox, proportional hazards model, was employed for hazard rate (HR) calculation. RESULTS: 307 subjects were recruited for analysis. The optimal PNI threshold is 40.923. Based on the Kaplan-Meier analysis, the elevated PNI group experienced better prognosis (P < 0.001). Cox analysis demonstrated that the PNI group was a stand-alone predictor for elderly AMI patient prognosis (HR = 1.674, 95% CI 1.076-2.604, P = 0.022). Subgroup analysis showed that the HR of the PNI group was the highest in the ST-segment elevation myocardial infarction (STEMI) subgroup (HR = 3.345, 95% CI 1.889-5.923, P = 0.05), but no discernible difference was observed in the non-ST-segment elevation myocardial infarction (NSTEMI) subgroup. CONCLUSION: Based on our analyses, the PNI during hospitalization can accurately predict the prognosis of elderly STEMI patients but not that of elderly NSTEMI patients.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Anciano , Humanos , Evaluación Nutricional , Pronóstico , Estudios Retrospectivos , Infarto del Miocardio/diagnóstico , Hospitalización
2.
J Am Chem Soc ; 145(35): 19283-19292, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37585603

RESUMEN

Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.

3.
Chemistry ; 29(54): e202300913, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37341127

RESUMEN

The loading of homogeneous catalysts with support can dramatically improve their performance in olefin polymerization. However, the challenge lies in the development of supported catalysts with well-defined pore structures and good compatibility to achieve high catalytic activity and product performance. Herein, we report the use of an emergent class of porous material-covalent organic framework material (COF) as a carrier to support metallocene catalyst-Cp2 ZrCl2 for ethylene polymerization. The COF-supported catalyst demonstrates a higher catalytic activity of 31.1×106  g mol-1 h-1 at 140 °C, compared with 11.2×106  g mol-1 h-1 for the homogenous one. The resulting polyethylene (PE) products possess higher weight-average molecular weight (Mw ) and narrower molecular weight distribution (Ð) after COF supporting, that is, Mw increases from 160 to 308 kDa and Ð drops from 3.3 to 2.2. The melting point (Tm ) is also increased by up to 5.2 °C. Moreover, the PE product possesses a characteristic filamentous microstructure and demonstrates an increased tensile strength from 19.0 to 30.7 MPa and elongation at break from 350 to 1400 % after catalyst loading. We believe that the use of COF carriers will facilitate the future development of supported catalysts for highly efficient olefin polymerization and high-performance polyolefins.

4.
Environ Geochem Health ; 45(6): 2869-2889, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36088450

RESUMEN

The highest incidence and mortality rate of lung cancer in rural area of Fuyuan has been a research hotspot, and the pathogenesis is still unclear. Therefore, atmospheric particulate matters (APMs) samples were collected between 18 February and 01 March 2017, exploring water-soluble potentially toxic metals (WSPTMs) and water-soluble inorganic ionic species (WSIIs) levels, size distribution, sources, acidity and alkalinity, and potential carcinogenic and non-carcinogenic risks, hoping to provide scientific basic data to solve this problem. In our study, the average ratio of nitrate ion (NO3-)/sulfate ion (SO42-) within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were 0.22, 0.18, 0.15, 0.34 and 0.36, respectively, that revealed that combustion sources contributed to PM were more significant. The anions in equilibrium (ANE) / cations in equilibrium (CAE) < 1 for all samples within PM1.1, PM2.0-3.3, PM3.3-7.0 indicate that the APMs were alkaline, but PM1.1-2.0 particulate matter shows weak acidity. SO42- prefers to combine with NH4+ to form (NH4)2SO4, which hinders the formation of NH4NO3, the remaining SO42- and NO3- to neutralize the K+, KNO3 was formed at all particulate, however, K2SO4 can only be formed in PM<3.3. Arsenic (As) and Selenium (Se) were identified as the most enriched WSPTMs in all PM sizes, predominantly from anthropogenic emissions, were suggested that coal combustion is a significant source of PM-bound WSPTMs. Total WSPTMs exhibited high total carcinogenic risks (TCR) values (9.98 × 10-6, 1.06 × 10-5, and 1.19 × 10-5 for girls, boys and adults, respectively) in the smaller particles (< 1.1 µm). Se was considered as the major contributor (63.60%) to carcinogenic risk (CR) in PM2.0 and had an inverse relationship with PM size that should be of prime concern.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias Pulmonares , Adulto , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Incidencia , Agua , Medición de Riesgo , China/epidemiología , Sulfatos/análisis , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Monitoreo del Ambiente , Estaciones del Año
5.
Environ Geochem Health ; 45(11): 7829-7839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37486413

RESUMEN

Environmental persistent free radicals (EPFRs) are receiving growing concerns owing to their potentially adverse impacts on human health. Road dust is one important source of air pollution in most cities and may pose significant health risks. Characteristics of EPFRs in urban road dusts and its formation mechanism(s) are still rarely studied. Here, we evaluated occurrence and size distributions of EPFRs in road dusts from different functional areas of an urban city, and assessed relationship between EPFRs and some transition metals. Strong electron paramagnetic resonance signals of 6.01 × 1016 - 1.3 × 1019 spins/g with the mean g value of 2.0029 ± 0.0019 were observed, indicating that EPFRs consisted of a mixture of C-centered radicals, and C-centered radicals with an adjacent oxygen atom in the urban road dust. Much more EPFRs enriched in finer dust particles. EPFRs significantly correlated with the total Fe, but not water-soluble Fe, suggesting different impacts of water-soluble and insoluble metals in the formation of EFPRs. Health risk assessment results indicated high risk potentials via the ingestion and dermal exposure to EPFRs in road dusts. Future studies are calling to look into formation mechanisms of EPFRs in urban road dusts and to quantitatively evaluate its potential risks on human health.


Asunto(s)
Contaminación del Aire , Elementos de Transición , Humanos , Polvo/análisis , Radicales Libres , Ciudades , Monitoreo del Ambiente
6.
Angew Chem Int Ed Engl ; 62(40): e202305644, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37325872

RESUMEN

Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3 ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C5-18 ) formation rate up to 1456 gproducts ⋅ gmetal species -1 ⋅ h-1 . The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.

7.
Aerobiologia (Bologna) ; 38(1): 23-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34866768

RESUMEN

Due to the COVID-19 pandemic in early 2020, large-scale industrial production has been stagnant and reduced, the urban air quality has been greatly improved. It provided an excellent opportunity to explore the effects of air pollutants on the sensitization of pollen allergen proteins in the environment. Platanus pollen grains sampled in the spring of 2019 and 2020 were used for detailed characterization and analysis. Scanning electron microscopy, Fourier transform infrared, X-ray spectroscopy (XPS), trypan blue staining, and western blot analysis were employed to characterize Platanus pollen protein released from pollen grains. Our data showed that the viability of the pollen grains in 2019 was lower compared that in 2020, and the pollen grains collected in 2019 had a higher absorption peak of protein functional groups. The XPS spectra assay result demonstrated that the binding energy of the high-resolution components had not variation on the surface of pollen grains, but relative content of nitrogen and peptide chain in the pollen grains sampled in 2019 were higher than in 2020. These results suggested that more protein in the pollen grains was released onto the surface of pollen grains. In addition, western blot assay showed that the expression of Pla a3 protein in pollen grains sampled in 2019 was significantly higher than that in 2020, revealing that air pollutants could enhance the expression of Pla a3 proteins in Platanus pollen. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10453-021-09731-6.

8.
J Am Chem Soc ; 143(1): 196-205, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33320650

RESUMEN

A unique 1D nanostructure of Pt@CeO2-BDC was prepared from Pt@CeBDC MOF. The Pt@CeO2-BDC was rich in oxygen vacancies (i.e., XPS Oß/(Oα + Oß) = 39.4%), and on the catalyst, the 2 nm Pt clusters were uniformly deposited on the 1D mesoporous polycrystalline CeO2. Toluene oxidation was conducted in a spectroscopic operando Raman-online FTIR reactor to elucidate the reaction mechanism and establish the structure-activity relationship. The reaction proceeds as follows: (I) adsorption of toluene as benzoate intermediates on Pt@CeO2-BDC at low temperature by reaction with surface peroxide species; (II) reaction activation and ring-opening involving lattice oxygen with a concomitant change in defect densities indicative of surface rearrangement; (III) complete oxidation to CO2 and H2O by lattice oxygen and reoxidation of the reduced ceria with consumption of adsorbed oxygen species. The Pt clusters, which mainly exist as Pt2+ with minor amounts of Pt0 and Pt4+ on the surface, facilitated the adsorption and reaction activation. The Pt-CeO2 interface generates reduced ceria sites forming nearby adsorbed peroxide at low temperature that oxidize toluene into benzoate species by a Langmuir-Hinshelwood mechanism. As the reaction temperature increases, the role of lattice oxygen becomes important, producing CO2 and H2O mainly by the Mars-van Krevelen mechanism.

9.
Bioorg Chem ; 110: 104764, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33657507

RESUMEN

Pillar[5]arene complexes of the naturally occurring compound bisdemethoxycurcumin (BDMC) were acquired for improving the water solubility and stability of BDMC. As a family member of curcuminoid compounds, BDMC has many interesting therapeutic properties. However, its low aqueous solubility and stability resulted in poor availability and restricted the clinical efficacy. Pillar[5]arenes with hydrophilic ends and a hydrophobic cavity could include with BDMC based on size matching. The synthesized hydrazide-pillar[5]arene (HP5A) and BDMC had a strong host-guest interaction with a 1:1 binding stoichiometry. Furthermore, the HP5A âŠƒ BDMC complex could self-assemble into well-defined fibers in water/ethanol solution. This supramolecular complex worked well in vitro for inhibiting the proliferation of hepatoma carcinoma cells HepG2. Remarkably, this method of complexation with pillar[5]arenes visibly reduced the undesirable side effects on normal cells without weakening the anti-cancer activity of the drugs. We expected that the obtained host-guest complex and fibrous assembly would provide a promising platform for delivering drugs with low water solubility.


Asunto(s)
Calixarenos/química , Calixarenos/farmacología , Diarilheptanoides/química , Diarilheptanoides/farmacología , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Liberación de Fármacos , Células HEK293 , Células Hep G2 , Humanos
10.
J Environ Sci (China) ; 95: 49-57, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653192

RESUMEN

Mass level of fine particles (PM2.5) in main cities in China has decreased significantly in recent years due to implementation of Chinese Clean Air Action Plan since 2013, however, O3 pollution is getting worse than before, especially in megacities such as in Shanghai. In this work, O3 and PM2.5 were continuously monitored from May 27, 2018 to March 31, 2019. Our data showed that the annual average concentration of PM2.5 and O3 (O3-8 hr, maximum 8-hour moving average of ozone days) was 39.35 ± 35.74 and 86.49 ± 41.65 µg/m3, respectively. The concentrations of PM2.5 showed clear seasonal trends, with higher concentrations in winter (83.36 ± 18.66 µg/m3) and lower concentrations in summer (19.85 ± 7.23 µg/m3), however, the seasonal trends of O3 were different with 103.75 ± 41.77 µg/m3 in summer and 58.59 ± 21.40 µg/m3 in winter. Air mass backward trajectory, analyzing results of potential source contribution function model and concentration weighted trajectory model implied that pollutants from northwestern China contributed significantly to the mass concentration of Shanghai PM2.5, while pollutants from areas of eastern coastal provinces and South China Sea contributed significantly to the mass level of ozone in Shanghai atmosphere. Mass concentration of twenty-one elements in the PM2.5 were investigated, and their relationships with O3 were analyzed. Mass level of ozone had good correlation with that of Ba (r = 0.64, p < 0.05) and V (r = 0.30, p > 0.05), suggesting vehicle emission pollutants contribute to the increasing concentration of ozone in Shanghai atmosphere.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Ozono/análisis , Atmósfera , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
11.
J Environ Sci (China) ; 95: 43-48, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653191

RESUMEN

Pollen pollution and allergy are becoming prominent issues in China. However, few studies on pollinosis have been reported. As an allergen in the atmosphere, allergenic Humulus scandens pollen was collected from four districts of Shanghai, including Wusong (WS), Jiading (JD), Xujiahui (XJH) and Songjiang (SJ). The mass concentrations of SO2, NO2, O3, PM10, and PM2.5 (particulate matter with air dynamic diameter less than 10 and 2.5 µm, respectively) near the four sampling sites were also recorded during Humulus scandens pollen season. The allergenicity of the Humulus scandens pollen was assessed by using of a rat model and enzyme linked immunosorbent assay (ELISA). Relationships between the allergenicity and air pollutants were correlated. Our results demonstrated that the biological viability of the pollens collected from the four districts exhibited no significant differences. ELISA and dot blotting results further demonstrated that the serum of sensitized rats exhibited much higher immune-reactive response than that of control groups. Western blotting showed that the 15 KD (1KD = 1000 dalton) proteins of Humulus pollen led to the allergic response. The allergenic intensity of Humulus pollen protein from different samples followed the pattern: WS > JD > XJ > SJ. There was a negative relationship between the allergenicity of Humulus pollens and PM10 (R = -0.99) / PM2.5 (R = -0.73), and a positive relationship with O3 (R = 0.92). These data clearly showed that PM10 and PM2.5 could enhance Humulus pollen protein release, and O3 could aggravate the allergenicity of the Humulus pollen.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Humulus/inmunología , Alérgenos/análisis , Animales , China , Material Particulado/análisis , Polen/química , Polen/inmunología , Ratas
12.
Small ; 15(42): e1903525, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31448563

RESUMEN

Mixed transition metal oxides (MTMOs) have enormous potential applications in energy and environment. Their use as catalysts for the treatment of environmental pollution requires further enhancement in activity and stability. This work presents a new synthesis approach that is both convenient and effective in preparing binary metal oxide catalysts (CeCuOx ) with excellent activity by achieving molecular-level mixing to promote aliovalent substitution. It also allows a single, pure MTMO to be prepared for enhanced stability under reaction by using a bimetallic metal-organic framework (MOF) as the catalyst precursor. This approach also enables the direct manipulation of the shape and form of the MTMO catalyst by controlling the crystallization and growth of the MOF precursor. A 2D CeCuOx catalyst is investigated for the oxidation reactions of methanol, acetone, toluene, and o-xylene. The catalyst can catalyze the complete reactions of these molecules into CO2 at temperatures below 200 °C, representing a significant improvement in performance. Furthermore, the catalyst can tolerate high moisture content without deactivation.

13.
Water Sci Technol ; 79(10): 1853-1859, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31294701

RESUMEN

In this study, photochemical degradation of two emerging pharmaceutical chemicals, mefenamic acid (MF) and triclosan (TCS), was investigated to clarify the role of treated wastewater effluent matrices on their environmental photolysis. Target compounds were individually exposed to simulated sunlight in different media: ultrapure buffered water and synthetic field water with treated municipal wastewater effluent. The results in ultrapure buffered water showed that the direct photolysis processes in aquatic environments are not relevant to the elimination of MF. However, in samples containing treated wastewater effluent, photochemical degradation of MF was clearly enhanced. Our results indicate that MF undergoes indirect photolysis by reactive intermediates produced in an effluent matrix. Further quenching experiments suggested that photochemically produced hydroxyl radicals and excited triplet state dissolved organic matter drive the degradation of MF. In contrast to MF, TCS photochemical degradation proceeds through rapid direct photolysis. TCS was quickly degraded in ultrapure buffered water but it is considerably hampered in samples containing wastewater effluent. The declined degradation of TCS in the synthetic field water was discussed in terms of underlying optical filter effects by coexisting chromophoric substances. Results emphasize the importance of taking local water chemistry into consideration when predicting natural attenuation of pharmaceutical chemicals in receiving areas.


Asunto(s)
Triclosán , Aguas Residuales , Contaminantes Químicos del Agua , Ácido Mefenámico , Fotólisis , Eliminación de Residuos Líquidos
14.
Water Sci Technol ; 78(10): 2036-2045, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30629531

RESUMEN

We report the results of using the excitation-emission matrix (EEM) method combined with parallel factor analysis (PARAFAC) to investigate the characteristics and occurrence of dissolved organic matter (DOM) in an urban stream impacted by effluent from a wastewater treatment plant (WWTP). The PARAFAC model divides the bulk EEM spectra into six individual fluorescent components with three humic-like components (C1-C3), two protein-like components (C4 and C5) and a wastewater-derived component (C6). In general, intensities of fluorescent components are abundant in WWTP effluent impacted samples, thus showing that such an effluent is a major source of DOM in urban rivers, but C5 is considered to have autochthonous sources within the stream. In areas where the effluent is released, the fluorescent intensity from components (except C5) gradually decreases as these components are transported downstream. However, concentrations of dissolved organic carbon remain almost constant downstream of the release area. These results would be attributed to degradation and/or modification of fluorophore. Photolysis experiments confirmed that fluorescent intensities can decrease with increase of irradiation times. C6 particularly showed a rapid photodegradation, remaining only 24.1% after 48 h photolysis. These findings would be important when assessing DOM source and water quality in aquatic environments by EEM-PARAFAC.


Asunto(s)
Monitoreo del Ambiente , Sustancias Húmicas/análisis , Ríos/química , Aguas Residuales/química , Contaminantes del Agua/análisis , Análisis Factorial , Japón , Compuestos Orgánicos , Espectrometría de Fluorescencia , Calidad del Agua
15.
Environ Geochem Health ; 40(4): 1541-1555, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29350354

RESUMEN

As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente/métodos , Magnetismo , Medición de Riesgo/métodos , Transportes , China
16.
J Environ Sci (China) ; 71: 13-31, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195672

RESUMEN

Atmospheric humic-like substances (HULIS) are not only an unresolved mixture of macro-organic compounds but also powerful chelating agents in atmospheric particulate matters (PMs); impacting on both the properties of aerosol particles and health effects by generating reactive oxygen species (ROS). Currently, the interests of HULIS are intensively shifting to the investigations of HULIS-metal synergic effects and kinetics modeling studies, as well as the development of HULIS quantification, findings of possible HULIS sources and generation of ROS from HULIS. In light of HULIS studies, we comprehensively review the current knowledge of isolation and physicochemical characterization of HULIS from atmospheric samples as well as HULIS properties (hygroscopic, surface activity, and colloidal) and possible sources of HULIS. This review mainly highlights the generation of reactive oxygen species (ROS) from PMs, HULIS and transition metals, especially iron. This review also summarized the mechanism of iron-organic complexation and recent findings of OH formation from HULIS-metal complexes. This review will be helpful to carry out the modeling studies that concern with HULIS-transition metals and for further studies in the generation of ROS from HULIS-metal complexes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Material Particulado/análisis , Especies Reactivas de Oxígeno/química , Aerosoles/análisis , Atmósfera/química , Modelos Químicos
17.
Tumour Biol ; 39(4): 1010428317697558, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28443475

RESUMEN

Glioma is the most common primary malignant tumor of the central nervous system, which results in both a poor prognosis and outcome because of the aggressive progression of disease, growth and resistance to surgery, chemotherapy, and radiotherapy. MiR-140-5p is a small, non-coding single-stranded RNA molecule, which was previously studied in the settings of human tongue cancer, hepatocellular carcinoma, and colorectal cancer. However, detailed data that formally demonstrate the contribution of miR-140-5p to glioma development are missing. Similarly, relatively little is known about the relationship of miR-140-5p, vascular endothelial growth factor A, and matrix metalloproteinase-2 in glioma progression. In this study, we found that miR-140-5p expression was significantly decreased in glioma tissues and in the glioma cell-lines U87 and U251 as compared with non-cancerous brain tissues by quantitative real-time polymerase chain reaction. In addition, miR-140-5p inhibited glioma cell proliferation and invasion and promoted glioma cell apoptosis both in vivo and in vitro. Interestingly, while the expression levels of miR-140-5p were higher in glioma cells, the messenger RNA or protein expression levels of vascular endothelial growth factor A and matrix metalloproteinase-2 were lower in glioma cells as determined by quantitative real-time polymerase chain reaction, western blot assay, and immunohistochemistry. By contrast, downregulation in the expression levels of miR-140-5p augmented the messenger RNA and protein expression levels of both vascular endothelial growth factor A and matrix metalloproteinase-2. These findings suggested that miR-140-5p inhibited glioma proliferation and invasion by regulating the vascular endothelial growth factor A/matrix metalloproteinase-2 signaling pathway both in vitro and in vivo.


Asunto(s)
Glioma/genética , Metaloproteinasa 2 de la Matriz/genética , MicroARNs/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Adulto , Anciano , Animales , Apoptosis/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Masculino , Ratones , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica/genética , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Part Fibre Toxicol ; 12: 5, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25888760

RESUMEN

OBJECTIVE: The development of nanotechnology has spurred concerns about the health effects of exposure to nanoparticles (NPs) and ultrafine particles (UFPs). Toxicological data on NPs and UFPs may provide evidence to support the development of regulations to reduce the risk of particle exposure. We tried to provide fundamental data to determine differences in cytotoxicity induced by ambient UFPs and engineered metal oxide NPs (ZnO, NiO, and CeO2). METHODS: UFPs were sampled by using of a nano micro-orifice uniform deposit impactor. Physicochemical characterization of the UFPs and nano metal oxide particles were studied by scanning electron microscopy and transmission electron microscopy. Cellular toxicity induced by the different particles was assessed by using of comprehensive approaches and compared after A549 cells were exposured to the particles. RESULTS: All of the measured particles could damage A549 cells at concentrations ranging from 25 to 200 µg/mL. The lowest survival ratio and the highest lactate dehydrogenase level were caused by nano-ZnO particles, but the highest levels of intracellular reactive oxygen species (ROS) and percentages of apoptosis were observed in cells treated with the soluble fraction of ambient fine particles (PM1.8) at 200 µg/mL. Relatively high concentrations of anthropogenic metals, including Zn, Ni, Fe, and Cu, may be responsible for the higher toxicity of fine ambient particles compared with the ambient coarse particles and UFPs. The selected heavy metals (Zn, Ni, Fe, and Cu) were found to be located in the perinuclear and cytoplasmic areas of A549 cells. The distribution pattern of metals from ambient particles showed that distributions of the metals in A549 cells were not uniform and followed the pattern Cu>Zn>Fe>Ni, suggesting that Cu was absorbed by A549 cells more easily than the other metals. CONCLUSIONS: Metal nanoparticles oxides and UFPs at low concentration could damage to cells, but the manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles. The local concentration effect of heavy metals in A549 cells, as well as the induction of oxidative stress by the particles, may be responsible for the damage observed to the cells.


Asunto(s)
Cerio/toxicidad , Nanopartículas/toxicidad , Níquel/toxicidad , Material Particulado/toxicidad , Óxido de Zinc/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cerio/análisis , Cerio/química , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/análisis , Nanopartículas/química , Níquel/análisis , Níquel/química , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Óxido de Zinc/análisis , Óxido de Zinc/química
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(11): 3046-9, 2015 Nov.
Artículo en Zh | MEDLINE | ID: mdl-26978905

RESUMEN

Vanadium dioxide (VO2) film will be phase-transitioned from insulator into metal, accompanied with dramatic change on conductivity, which is named as photo-induced insulator-metal phase transition. Such phase transition of VO2 film has important application potentials in modulators or other functional devices for terahertz waves. In this paper, the transmission spectrum variations before and after the photo-induced insulator-metal phase transition of vanadium dioxide film are investigated, and the phase transition properties in terahertz(THz) region are analyzed. In the experiment, the phase transition of the VO2 film was induced by a continuous wave (CW) laser source and a femtosecond (fs) laser source, respectively. Obvious changes on the THz waveforms were observed for the both mentioned means of excitation, and the amplitude attenuation, as well as the signal distortion, was intensified with the increase of the impinging optical power. The fast Fourier transform (FFT) spectra of the transmitted THz time-domain signals were analyzed and it was found that the amplitude of the transmitted spectrum decreased synchronously with the increase of the optical power, accompanied with deformation of the spectrum line shape at the same time. The reason was that the macroscopic dielectric properties of the VO2 film approached gradually to that of a metal as laser power was increased. A parameter, transmission modulation function, was defined in the paper as the amplitude difference between the transmission spectra of the VO2 film before and after the laser excitation, to describe the dispersivity of the photo-induced phase transition more clearly. From the curve of the transmission modulation function, strong frequency-dependent properties at THz frequencies were found to vary regularly with the incident light power. After furthermore comparison, it was found that, though the insulator-metal phase transition could be trigged by both CW laser source and fs laser source, the corresponding impinging optical power values were obviously alternative for the equivalent transmission modulation function. At the end of the paper, the difference of the phase transition efficiency between the two excitation methods was analyzed and discussed.

20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(9): 2478-82, 2015 Sep.
Artículo en Zh | MEDLINE | ID: mdl-26669151

RESUMEN

Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb-doped fluoride crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA