Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aesthet Surg J ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796832

RESUMEN

BACKGROUND: Keloids are excessive formations of scar tissue that develop at the site of a skin injury. Due to their invasive nature, they have a negative impact on the skin's appearance and are prone to recurrence, making them a challenging condition to treat in terms of skin aesthetics. OBJECTIVES: The objective of this article is to compare the long-term effects of dermatologic trephination with non-surgical treatments in scar repair and evaluate their clinical value. METHODS: A retrospective analysis was conducted on 48 patients who received keloids treatment in the Department of Dermatology and Thoracic Surgery of our hospital from January 2021 to October 2023, of which 24 patients received dermatologic trephination and 24 patients received non-surgical treatment. Outcome measures included scar appearance, scar healing time, pain and itching levels, and patient satisfaction. RESULTS: In the comparison of scar healing time, the healing time of patients using dermatologic trephination was significantly shorter than that of patients in the non-surgical group. In the evaluation of the degree of itching, the degree of itching in patients undergoing dermatologic trephination was significantly lower than that of patients in the non-surgical group. In the evaluation of satisfaction, the satisfaction of patients using dermatologic trephination was significantly higher than that of patients in the non-surgical group. CONCLUSIONS: This study demonstrates that trephination achieves more significant long-term results in keloid revision, including improved keloid appearance, itching and patient satisfaction.

2.
Anal Chim Acta ; 1295: 342270, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38355227

RESUMEN

The construction of materials with rapid electron transfer is considered an effective method for enhancing electrochemical activity in electroanalysis. It has been widely demonstrated that valence changes in transition metal ions can promote electron transfer and thus increase electrochemical activity. Recently, valence-variable transition metal oxides (TMOs) have shown popular application in electrochemical analysis by using their abundant valence state changes to accelerate electron transfer during electrochemical detection. In this review, we summarize recent research advances in valence changes of TMOs and their application in electrochemical analysis. This includes the definition and mechanism of valence change, the association of valence changes with electronic structure, and their applications in electrochemical detection, along with the use of density functional theory (DFT) to simulate the process of electron transfer during valence changes. Finally, the challenges and opportunities for developing and applying valence changes in electrochemical analysis are also identified.

3.
Anal Chim Acta ; 1318: 342952, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067907

RESUMEN

Defects on nanomaterials can effectively enhance the performance of electrochemical detection, but an excessive number of defects may have an adverse effect. In this study, MoS2 nanosheets were synthesized using a hydrothermal synthesis method. By controlling the calcination temperature, MoS2-7H, calcined at 700 °C under H2/Ar2, exhibited an optimal ratio of "point" defects to "plane" defects, resulting in excellent detection performance for mercury ions (Hg(II)). In general, the sulfur vacancies (SV) and undercoordinated Mo generated after calcination of MoS2 significantly promotes the adsorption process and redox of Hg(II) by increasing surface chemical activity, providing additional adsorption sites and adjusting surface charge status to accelerate the catalytic redox of Hg(II). The prepared MoS2-7H-modified electrode showed a sensitivity of 18.25 µA µM-1 and a low limit of detection (LOD) of 6.60 nM towards Hg(II). MoS2-7H also demonstrated a good anti-interference, stability, and exhibited a strong current response in real water samples. The modulation to obtain appropriate number of defects in MoS2 holds promise as a prospective electrode modification material for the electroanalysis.

4.
Comput Struct Biotechnol J ; 23: 2746-2753, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39050785

RESUMEN

The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ∼400 high-quality scATAC-seq samples covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facilitates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA