Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928256

RESUMEN

The construction of peptides to mimic heterogeneous proteins such as type I collagen plays a pivotal role in deciphering their function and pathogenesis. However, progress in the field has been severely hampered by the lack of capability to create stable heterotrimers with desired functional sequences and without the effect of homotrimers. We have herein developed a set of triblock peptides that can assemble into collagen mimetic heterotrimers with desired amino acids and are free from the interference of homotrimers. The triblock peptides comprise a central collagen-like block and two oppositely charged N-/C-terminal blocks, which display inherent incompetency of homotrimer formation. The favorable electrostatic attraction between two paired triblock peptides with complementary terminal charged sequences promptly leads to stable heterotrimers with controlled chain composition. The independence of the collagen-like block from the two terminal blocks endows this system with the adaptability to incorporate desired amino acid sequences while maintaining the heterotrimer structure. The triblock peptides provide a versatile and robust tool to mimic the composition and function of heterotrimer collagen and may have great potential in the design of innovative peptides mimicking heterogeneous proteins.


Asunto(s)
Colágeno , Péptidos , Péptidos/química , Colágeno/química , Multimerización de Proteína , Secuencia de Aminoácidos , Colágeno Tipo I/química , Electricidad Estática
2.
J Biol Chem ; 298(1): 101430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801553

RESUMEN

Various plants use antimicrobial proteins/peptides to resist phytopathogens. In the potato, Solanum tuberosum, the plant-specific insert (PSI) domain of an aspartic protease performs this role by disrupting phytopathogen plasma membranes. However, the mechanism by which PSI selects target membranes has not been elucidated. Here, we studied PSI-induced membrane fusion, focusing on the effects of lipid composition on fusion efficiency. Membrane fusion by the PSI involves an intermediate state whereby adjacent liposomes share their bilayers. We found that increasing the concentration of negatively charged phosphatidylserine (PS) phospholipids substantially accelerated PSI-mediated membrane fusion. NMR data demonstrated that PS did not affect the binding between the PSI and liposomes but had seminal effects on the dynamics of PSI interaction with liposomes. In PS-free liposomes, the PSI underwent significant motion, which was suppressed on PS-contained liposomes. Molecular dynamics simulations showed that the PSI binds to PS-containing membranes with a dominant angle ranging from -31° to 30°, with respect to the bilayer, and is closer to the membrane surfaces. In contrast, PSI is mobile and exhibits multiple topological states on the surface of PS-free membranes. Taken together, our data suggested that PS lipids limit the motion of the anchored PSI, bringing it closer to the membrane surface and efficiently bridging different liposomes to accelerate fusion. As most phytopathogens have a higher content of negatively charged lipids as compared with host cells, these results indicate that the PSI selectively targets negatively charged lipids, which likely represents a way of distinguishing the pathogen from the host.


Asunto(s)
Proteasas de Ácido Aspártico , Fosfolípidos , Solanum tuberosum , Membrana Celular/metabolismo , Liposomas/química , Fusión de Membrana , Fosfatidilserinas/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Dominios Proteicos , Solanum tuberosum/química , Solanum tuberosum/metabolismo
3.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570771

RESUMEN

The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Secuencia de Bases , Expansión de las Repeticiones de ADN , ARN/genética , ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
J Cell Mol Med ; 26(4): 1156-1168, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34994052

RESUMEN

The role of alveolar macrophages (AMs) in chronic obstructive pulmonary disease is unclear. We characterized the function of AMs in rats chronically exposed to biomass fuel smoke (BMF) and studied the signal pathways that regulate AMs polarization. One hundred and eighty male Sprague-Dawley rats were divided into BMF group and clean air control (CON) group. After BMF smoke exposure for 4 days, 1 month and 6 months, the cytokine secretion and function of AMs were determined by flow cytometry, quantitative polymerase chain reaction, Western blotting and immunofluorescence. Bone marrow-derived macrophages were cultured and exposed to particulate matter (PM) from the smoke. Exposure initially promoted pro-inflammatory factors, but pro-inflammatory macrophages shared features of anti-inflammatory macrophages. Consistent with IL-4 upregulated in bronchoalveolar lavage fluid, p-Stat6 and peroxisome proliferator-activated receptor γ (PPARγ) in AMs elevated at 4 days of exposure. After 6 months of exposure, CD206, TGF-ß1 and p-Smad3 were significantly higher than the control groups. PPARγ reversed the M1 phenotype induced by PM in vitro and drove the macrophages into the M2 phenotype. Altogether, the study demonstrates the dynamic phenotype and functional changes in AMs during exposure to BMF smoke.


Asunto(s)
Macrófagos Alveolares , Material Particulado , Animales , Biomasa , Pulmón , Activación de Macrófagos , Macrófagos Alveolares/metabolismo , Masculino , Material Particulado/toxicidad , Ratas , Ratas Sprague-Dawley
5.
J Biol Chem ; 295(43): 14548-14562, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32651232

RESUMEN

In plants, many natural defense mechanisms include cellular membrane fusion as a way to resist infection by external pathogens. Several plant proteins mediate membrane fusion, but the detailed mechanism by which they promote fusion is less clear. Understanding this process could provide valuable insights into these proteins' physiological functions and guide bioengineering applications (i.e. the design of antimicrobial proteins). The plant-specific insert (PSI) from Solanum tuberosum can help reduce certain pathogen attack via membrane fusion. To gain new insights into the process of PSI-induced membrane fusion, a combined approach of NMR, FRET, and in silico studies was used. Our results indicate that (i) under acidic conditions, the PSI experiences a monomer-dimer equilibrium, and the dimeric PSI induces membrane fusion below a certain critical pH; (ii) after fusion, the PSI resides in a highly dehydrated environment with limited solvent accessibility, suggesting its capability in reducing repulsive dehydration forces between liposomes to facilitate fusion; and (iii) as shown by molecular dynamics simulations, the PSI dimer can bind stably to membrane surfaces and can bridge liposomes in close proximity, a critical step for the membrane fusion. In summary, this study provides new and unique insights into the mechanisms by which the PSI and similar proteins induce membrane fusion.


Asunto(s)
Fusión de Membrana , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Simulación de Dinámica Molecular , Proteínas de Plantas/química , Agregado de Proteínas , Multimerización de Proteína , Solanum tuberosum/química
6.
Biochemistry ; 59(24): 2226-2236, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32469203

RESUMEN

The interplay between protein folding and chemical reaction has been an intriguing subject. In this contribution, we report the study of SpyTag and SpyCatcher reactive mutants using a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, liquid chromatography and mass spectrometry, circular dichroism, and NMR spectroscopy. It was found that the wild-type SpyCatcher is well-folded in solution and docks with SpyTag to form an intermediate that promotes isopeptide bond formation. By contrast, the double mutant SpyCatcherVA is disordered in solution yet remains reactive toward SpyTag, forming a well-folded covalent complex. Control experiments using the catalytically inactive mutants further reveal the critical role of the isopeptide bond in stabilizing the otherwise loose SpyTag-SpyCatcherVA complex, amplifying the effect of the minute sequence disparity. We believe that the synergy between protein folding and isopeptide bonding is an effective way to enhance protein stability and engineer protein-protein interactions.


Asunto(s)
Mutación , Péptidos/química , Péptidos/genética , Dicroismo Circular , Ciclización , Resonancia Magnética Nuclear Biomolecular , Estabilidad Proteica
7.
Nucleic Acids Res ; 46(6): 3119-3129, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29490081

RESUMEN

Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5' non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5' side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π-π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.


Asunto(s)
Disparidad de Par Base , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas Virales/metabolismo , Secuencia de Bases , Biocatálisis , ADN/química , ADN/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/genética
8.
Proc Natl Acad Sci U S A ; 114(52): 13661-13666, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229866

RESUMEN

Metalloregulators allosterically control transcriptional activity through metal binding-induced reorganization of ligand residues and/or hydrogen bonding networks, while the coordination atoms on the same ligand residues remain seldom changed. Here we show that the MarR-type zinc transcriptional regulator ZitR switches one of its histidine nitrogen atoms for zinc coordination during the allosteric control of DNA binding. The Zn(II)-coordination nitrogen on histidine 42 within ZitR's high-affinity zinc site (site 1) switches from Nε2 to Nδ1 upon Zn(II) binding to its low-affinity zinc site (site 2), which facilitates ZitR's conversion from the nonoptimal to the optimal DNA-binding conformation. This histidine switch-mediated cooperation between site 1 and site 2 enables ZitR to adjust its DNA-binding affinity in response to a broad range of zinc fluctuation, which may allow the fine tuning of transcriptional regulation.


Asunto(s)
Histidina/química , Histidina/metabolismo , Zinc/metabolismo , Regulación Alostérica , Sitios de Unión , ADN/química , ADN/metabolismo , Espacio Intracelular/metabolismo , Cinética , Conformación Molecular , Relación Estructura-Actividad
9.
Chemistry ; 25(16): 4115-4122, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30632195

RESUMEN

Solid-state (SS) NMR spectroscopy is a powerful technique for studying challenging biological systems, but it often suffers from low sensitivity. A longitudinal relaxation optimization scheme to enhance the signal sensitivity of HSQC experiments in SSNMR spectroscopy is reported. Under the proposed scheme, the 1 H spins of 1 H-X (15 N or 13 C) are selected for signal acquisition, whereas other vast 1 H spins are flipped back to the axis of the static magnetic field to accelerate the spin recovery of the observed 1 H spins, resulting in enhanced sensitivity. Three biological systems are used to evaluate this strategy, including a seven-transmembrane protein, an RNA, and a whole-cell sample. For all three samples, the proposed scheme largely shortens the effective 1 H longitudinal relaxation time and results in a 1.3-2.5-fold gain in sensitivity. The selected systems are representative of challenging biological systems for observation by means of SSNMR spectroscopy; thus indicating the general applicability of this method, which is particularly important for biological samples with a short lifetime or with limited sample quantities.


Asunto(s)
Proteínas de la Membrana/análisis , ARN/análisis , Isótopos de Carbono/química , Escherichia coli , Marcaje Isotópico/métodos , Estructura Molecular , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos
10.
Chemistry ; 24(35): 8698-8707, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29277936

RESUMEN

The structures of RNAs, which play critical roles in various biological processes, provide important clues and insights into the biological functions of these molecules. However, RNA structure determination remains a challenging topic. In recent years, magic-angle-spinning solid-state NMR (MAS SSNMR) has emerged as an alternative technique for structural and dynamic characterization of RNA. MAS SSNMR has been successfully applied to provide atomic-level structural information about several RNA molecules and RNA-protein complexes. In this Minireview, we give an overview of recent progress in the field of MAS SSNMR based RNA structural characterization, and introduce sample preparation strategies and SSNMR spectroscopic techniques that have been incorporated to identify RNA structural elements. We also highlight a few impressive examples of RNAs that have been investigated extensively by SSNMR. Finally, we briefly discuss future technical trends in the use of MAS SSNMR to facilitate RNA structure determination.


Asunto(s)
ARN/química , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico
11.
J Biomol NMR ; 68(3): 203-214, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28560567

RESUMEN

Solid-state NMR (SSNMR) is an attractive technique for studying large membrane proteins in membrane-mimetic environments. However, SSNMR experiments often suffer from low efficiency, due to the inherent low sensitivity and the long recycle delays needed to recover the magnetization. Here we demonstrate that the incorporation of a small amount of a Gd3+-chelated lipid, Gd3+-DMPE-DTPA, into proteoliposomes greatly shortens the spin-lattice relaxation time (1H-T 1) of lipid-reconstituted membrane proteins and accelerates the data collection. This effect has been evaluated on a 30 kDa, seven-transmembrane protein, Leptosphaeria rhodopsin. With the Gd3+-chelated lipid, we can perform 2D SSNMR experiments 3 times faster than by diamagnetic control. By combining this paramagnetic relaxation-assisted data collection with non-uniform sampling, the 3D experimental times are reduced eightfold with respect to traditional 3D experiments on diamagnetic samples. A comparison between the paramagnetic relaxation enhancement (PRE) effects of Cu2+- and Gd3+-chelated lipids indicates the much higher relaxivity of the latter. Hence, a tenfold lower concentration is needed for Gd3+-chelated lipids to achieve comparable PRE effects to Cu2+-chelated lipids. In addition, Gd3+-chelated lipids neither alter the protein structures nor induce significant line-width broadening of the protein signals. This work is expected to be beneficial for structural and dynamic studies of large membrane proteins by SSNMR.


Asunto(s)
Quelantes/química , Gadolinio/química , Lípidos/química , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Liposomas
12.
J Biomol NMR ; 65(1): 7-13, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27121590

RESUMEN

We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Células Eucariotas , Resonancia Magnética Nuclear Biomolecular/métodos , Levaduras/genética
13.
Nat Methods ; 10(10): 1007-12, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24013819

RESUMEN

Determination of structure of integral membrane proteins, especially in their native environment, is a formidable challenge in structural biology. Here we demonstrate that magic angle spinning solid-state NMR spectroscopy can be used to determine structures of membrane proteins reconstituted in synthetic lipids, an environment similar to the natural membrane. We combined a large number of experimentally determined interatomic distances and local torsional restraints to solve the structure of an oligomeric membrane protein of common seven-helical fold, Anabaena sensory rhodopsin (ASR). We determined the atomic resolution detail of the oligomerization interface of the ASR trimer, and the arrangement of helices, side chains and the retinal cofactor in the monomer.


Asunto(s)
Anabaena/química , Lípidos/química , Proteínas de la Membrana/química , Rodopsinas Sensoriales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína
14.
Biophys J ; 108(7): 1683-1696, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863060

RESUMEN

Magic-angle spinning nuclear magnetic resonance is well suited for the study of membrane proteins in the nativelike lipid environment. However, the natural cellular membrane is invariably more complex than the proteoliposomes most often used for solid-state NMR (SSNMR) studies, and differences may affect the structure and dynamics of the proteins under examination. In this work we use SSNMR and other biochemical and biophysical methods to probe the structure of a seven-transmembrane helical photoreceptor, Anabaena sensory rhodopsin (ASR), prepared in the Escherichia coli inner membrane, and compare it to that in a bilayer formed by DMPC/DMPA lipids. We find that ASR is organized into trimers in both environments but forms two-dimensional crystal lattices of different symmetries. It favors hexagonal packing in liposomes, but may form a square lattice in the E. coli membrane. To examine possible changes in structure site-specifically, we perform two- and three-dimensional SSNMR experiments and analyze the differences in chemical shifts and peak intensities. Overall, this analysis reveals that the structure of ASR is largely conserved in the inner membrane of E. coli, with many of the important structural features of rhodopsins previously observed in ASR in proteoliposomes being preserved. Small, site-specific perturbations in protein structure that occur as a result of the membrane changes indicate that the protein can subtly adapt to its environment without large structural rearrangement.


Asunto(s)
Membrana Celular/metabolismo , Rodopsinas Sensoriales/química , Secuencia de Aminoácidos , Anabaena/química , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Rodopsinas Sensoriales/metabolismo
15.
J Biol Chem ; 289(2): 697-707, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24265313

RESUMEN

Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Pepsina A/química , Fragmentos de Péptidos/química , Pliegue de Proteína , Sitios de Unión/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación , Pepsina A/genética , Pepsina A/metabolismo , Pepsinógeno A/química , Pepsinógeno A/genética , Pepsinógeno A/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Replegamiento Proteico , Estructura Terciaria de Proteína
16.
J Am Chem Soc ; 136(7): 2833-42, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24467417

RESUMEN

The ability to detect and characterize molecular motions represents one of the unique strengths of nuclear magnetic resonance (NMR) spectroscopy. In this study, we report solid-state NMR site-specific measurements of the dipolar order parameters and (15)N rotating frame spin-lattice (R1ρ) relaxation rates in a seven transmembrane helical protein Anabaena Sensory Rhodopsin reconstituted in lipids. The magnitudes of the observed order parameters indicate that both the well-defined transmembrane regions and the less structured intramembrane loops undergo restricted submicrosecond time scale motions. In contrast, the R1ρ rates, which were measured under fast magic angle spinning conditions, vary by an order of magnitude between the TM and exposed regions and suggest the presence of intermediate time scale motions. Using a simple model, which assumes a single exponential autocorrelation function, we estimated the time scales of dominant stochastic motions to be on the order of low tens of nanoseconds for most residues within the TM helices and tens to hundreds of nanoseconds for the extracellular B-C and F-G loops. These relatively slow time scales could be attributed to collective anisotropic motions. We used the 3D Gaussian axial fluctuations model to estimate amplitudes, directions, and time scales of overall motions for helices and the extracellular B-C and F-G loops. Within this model, the TM helices A,B,C,D,E,F undergo rigid body motions on a time scale of tens of nanoseconds, while the time scale for the seventh helix G approaches 100 ns. Similar time scales of roughly 100-200 ns are estimated for the B-C and F-G loops.


Asunto(s)
Anabaena , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Secuencia de Aminoácidos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento , Estructura Secundaria de Proteína
17.
J Biomol NMR ; 58(1): 37-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24338448

RESUMEN

Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of (13)C and (1)H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time.


Asunto(s)
Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsina/química , Anabaena/metabolismo , Protones , Rodopsinas Microbianas , Solventes
18.
J Med Chem ; 67(2): 1044-1060, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38173250

RESUMEN

Antimicrobial peptides (AMPs) offer an opportunity to overcome multidrug resistance. Here, novel peptides were designed based on AMP fragments derived from sea cucumber hemolytic lectin to enhance anti-methicillin-resistant Staphylococcus aureus (MRSA) activity with less side effects. Two designed peptides, CGS19 (LARVARRVIRFIRRAW-NH2) and CGS20 (RRRLARRLIFFIRRAW-NH2), exhibited strong antibacterial activities against clinically isolated MRSA with MICs of 3-6 µM, but no obvious cytotoxicity was observed. Consistently, CGS19 and CGS20 exerted rapid bactericidal activity and effectively induced 5.9 and 5.8 log reduction of MRSA counts in mouse subeschar, respectively. Further, CGS19 and CGS20 kill bacteria not only through disturbing membrane integrity but also by binding formate-tetrahydrofolate ligase, a key enzyme in the folate metabolism pathway, thereby inhibiting the folate pathway of MRSA. CGS19 and CGS20 are promising lead candidates for drug development against MRSA infection. The dual mechanisms on the identical peptide sequence or scaffold might be an underappreciated manner of treating life-threatening pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Antibacterianos/farmacología , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana , Secuencia de Aminoácidos
19.
MAbs ; 15(1): 2236740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37530414

RESUMEN

Antibody-based immune checkpoint blockade (ICB)-based therapeutics have become effective clinical applications for cancers. Applications of monoclonal antibodies (mAbs) to de-activate the PD-1-PD-L1 pathway could effectively reverse the phenotype of depleted activated thymocytes (T cells) to recover their anti-tumoral activities. High-resolution structures of the complexes of the therapeutic monoclonal antibodies with PD-1 or PD-L1 have revealed the key inter-molecular interactions and provided valuable insights into the fundamental mechanisms by which these antibodies inhibit PD-L1-PD-1 binding. Each anti-PD-1 mAb exhibits a unique blockade mechanism, such as interference with large PD-1-PD-L1 contacting interfaces, steric hindrance by overlapping a small area of this site, or binding to an N-glycosylated site. In contrast, all therapeutic anti-PD-L1 mAbs bind to a similar area of PD-L1. Here, we summarized advances in the structural characterization of the complexes of commercial mAbs that target PD-1 or PD-L1. In particular, we focus on the unique characteristics of those mAb structures, epitopes, and blockade mechanisms. It is well known that the use of antibodies as anti-tumor drugs has increased recently and both PD-1 and PD-L1 have attracted substantial attention as target for antibodies derived from new technologies. By focusing on structural characterization, this review aims to aid the development of novel antibodies targeting PD-1 or PD-L1 in the future.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/metabolismo , Anticuerpos Monoclonales , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico
20.
Synth Syst Biotechnol ; 8(2): 213-219, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36875498

RESUMEN

Nucleic acid detection plays a key role in diverse diagnosis and disease control. Currently available nucleic acid detection techniques are challenged by trade-offs among speed, simplicity, precision and cost. Here, we described a novel method, designated SENSOR (Sulfur DNA mediated nucleic acid sensing platform), for rapid nucleic acid detection. SENSOR was developed from phosphorothioate (PT)-DNA and sulfur binding domain (SBD) which specifically binds double-stranded PT-modified DNA. SENSOR utilizes PT-DNA oligo and SBD as targeting module, which is linked with split luciferase reporter to generate luminescence signal within 10 min. We tested detection on synthesized nucleic acid and COVID-19 pseudovirus, achieving attomolar sensitivity combined with an amplification procedure. Single nucleotide polymorphisms (SNP) could also be discriminated. Indicating SENSOR a new promising nucleic acid detection technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA