Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(D1): D731-D742, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31713623

RESUMEN

Formed in late 1999, the Rat Genome Database (RGD, https://rgd.mcw.edu) will be 20 in 2020, the Year of the Rat. Because the laboratory rat, Rattus norvegicus, has been used as a model for complex human diseases such as cardiovascular disease, diabetes, cancer, neurological disorders and arthritis, among others, for >150 years, RGD has always been disease-focused and committed to providing data and tools for researchers doing comparative genomics and translational studies. At its inception, before the sequencing of the rat genome, RGD started with only a few data types localized on genetic and radiation hybrid (RH) maps and offered only a few tools for querying and consolidating that data. Since that time, RGD has expanded to include a wealth of structured and standardized genetic, genomic, phenotypic, and disease-related data for eight species, and a suite of innovative tools for querying, analyzing and visualizing this data. This article provides an overview of recent substantial additions and improvements to RGD's data and tools that can assist researchers in finding and utilizing the data they need, whether their goal is to develop new precision models of disease or to more fully explore emerging details within a system or across multiple systems.


Asunto(s)
Mapeo Cromosómico , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma , Ratas/genética , Algoritmos , Animales , Chinchilla/genética , Modelos Animales de Enfermedad , Perros/genética , Marcadores Genéticos , Variación Genética , Humanos , Internet , Ratones/genética , Pan troglodytes/genética , Fenotipo , Mapeo de Interacción de Proteínas , Retina/metabolismo , Sciuridae/genética , Programas Informáticos , Especificidad de la Especie , Porcinos/genética , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 43(Database issue): D743-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355511

RESUMEN

The Rat Genome Database (RGD, http://rgd.mcw.edu) provides the most comprehensive data repository and informatics platform related to the laboratory rat, one of the most important model organisms for disease studies. RGD maintains and updates datasets for genomic elements such as genes, transcripts and increasingly in recent years, sequence variations, as well as map positions for multiple assemblies and sequence information. Functional annotations for genomic elements are curated from published literature, submitted by researchers and integrated from other public resources. Complementing the genomic data catalogs are those associated with phenotypes and disease, including strains, QTL and experimental phenotype measurements across hundreds of strains. Data are submitted by researchers, acquired through bulk data pipelines or curated from published literature. Innovative software tools provide users with an integrated platform to query, mine, display and analyze valuable genomic and phenomic datasets for discovery and enhancement of their own research. This update highlights recent developments that reflect an increasing focus on: (i) genomic variation, (ii) phenotypes and diseases, (iii) data related to the environment and experimental conditions and (iv) datasets and software tools that allow the user to explore and analyze the interactions among these and their impact on disease.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genómica , Fenotipo , Ratas/genética , Animales , Enfermedad/genética , Ambiente , Genoma , Internet , Anotación de Secuencia Molecular
4.
Physiol Genomics ; 48(8): 589-600, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287925

RESUMEN

Cardiovascular diseases are complex diseases caused by a combination of genetic and environmental factors. To facilitate progress in complex disease research, the Rat Genome Database (RGD) provides the community with a disease portal where genome objects and biological data related to cardiovascular diseases are systematically organized. The purpose of this study is to present biocuration at RGD, including disease, genetic, and pathway data. The RGD curation team uses controlled vocabularies/ontologies to organize data curated from the published literature or imported from disease and pathway databases. These organized annotations are associated with genes, strains, and quantitative trait loci (QTLs), thus linking functional annotations to genome objects. Screen shots from the web pages are used to demonstrate the organization of annotations at RGD. The human cardiovascular disease genes identified by annotations were grouped according to data sources and their annotation profiles were compared by in-house tools and other enrichment tools available to the public. The analysis results show that the imported cardiovascular disease genes from ClinVar and OMIM are functionally different from the RGD manually curated genes in terms of pathway and Gene Ontology annotations. The inclusion of disease genes from other databases enriches the collection of disease genes not only in quantity but also in quality.


Asunto(s)
Enfermedades Cardiovasculares/genética , Genoma/genética , Animales , Bases de Datos Genéticas , Ontología de Genes , Genómica/métodos , Humanos , Anotación de Secuencia Molecular/métodos , Sitios de Carácter Cuantitativo/genética , Ratas
5.
Brief Bioinform ; 14(4): 520-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23434633

RESUMEN

The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD's comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.


Asunto(s)
Bases de Datos Genéticas , Genoma , Animales , Humanos , Ratones , Fenotipo , Ratas
6.
Hum Genomics ; 8: 17, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25265995

RESUMEN

BACKGROUND: Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system's defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks. RESULTS: The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites. CONCLUSIONS: The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes/genética , Genoma , Redes y Vías Metabólicas/genética , Biología de Sistemas/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Anotación de Secuencia Molecular , Fenotipo , Ratas , Transducción de Señal , Interfaz Usuario-Computador
7.
Physiol Genomics ; 45(18): 809-16, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23881287

RESUMEN

The rat has been widely used as a disease model in a laboratory setting, resulting in an abundance of genetic and phenotype data from a wide variety of studies. These data can be found at the Rat Genome Database (RGD, http://rgd.mcw.edu/), which provides a platform for researchers interested in linking genomic variations to phenotypes. Quantitative trait loci (QTLs) form one of the earliest and core datasets, allowing researchers to identify loci harboring genes associated with disease. These QTLs are not only important for those using the rat to identify genes and regions associated with disease, but also for cross-organism analyses of syntenic regions on the mouse and the human genomes to identify potential regions for study in these organisms. Currently, RGD has data on >1,900 rat QTLs that include details about the methods and animals used to determine the respective QTL along with the genomic positions and markers that define the region. RGD also curates human QTLs (>1,900) and houses>4,000 mouse QTLs (imported from Mouse Genome Informatics). Multiple ontologies are used to standardize traits, phenotypes, diseases, and experimental methods to facilitate queries, analyses, and cross-organism comparisons. QTLs are visualized in tools such as GBrowse and GViewer, with additional tools for analysis of gene sets within QTL regions. The QTL data at RGD provide valuable information for the study of mapped phenotypes and identification of candidate genes for disease associations.


Asunto(s)
Bases de Datos Genéticas , Genoma , Sitios de Carácter Cuantitativo , Acceso a la Información , Animales , Marcadores Genéticos , Humanos , Internet , Ratones , Fenotipo , Ratas
8.
Kidney Int ; 83(2): 242-50, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23235564

RESUMEN

Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 min of ischemia and 24 h reperfusion of 4.1 and 1.3 mg/dl in SS and BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7(BN), SS-X(BN), SS-8(BN), SS-4(BN), SS-15(BN), SS-3(BN), SS-10(BN), SS-6(BN), and SS-5(BN)) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the Rat Genome Database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet-to-be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.


Asunto(s)
Lesión Renal Aguda/genética , Cromosomas de los Mamíferos/fisiología , Predisposición Genética a la Enfermedad , Daño por Reperfusión/genética , Animales , Creatinina/sangre , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Sitios de Carácter Cuantitativo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas Dahl , Factores de Transcripción/genética
9.
Curr Protoc ; 3(6): e804, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37347557

RESUMEN

The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, https://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes, cellular components, and chemical interactions for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat and other species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Navigating the Rat Genome Database (RGD) home page Basic Protocol 2: Using the RGD search functions Basic Protocol 3: Searching for quantitative trait loci Basic Protocol 4: Using the RGD genome browser (JBrowse) to find phenotypic annotations Basic Protocol 5: Using OntoMate to find gene-disease data Basic Protocol 6: Using MOET to find gene-ontology enrichment Basic Protocol 7: Using OLGA to generate gene lists for analysis Basic Protocol 8: Using the GA tool to analyze ontology annotations for genes Basic Protocol 9: Using the RGD InterViewer tool to find protein interaction data Basic Protocol 10: Using the RGD Variant Visualizer tool to find genetic variant data Basic Protocol 11: Using the RGD Disease Portals to find disease, phenotype, and other information Basic Protocol 12: Using the RGD Phenotypes & Models Portal to find qualitative and quantitative phenotype data and other rat strain-related information Basic Protocol 13: Using the RGD Pathway Portal to find disease and phenotype data via molecular pathways.


Asunto(s)
Genómica , Sitios de Carácter Cuantitativo , Humanos , Animales , Ratas , Bases de Datos de Proteínas , Fenotipo , Oligopéptidos
10.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36930729

RESUMEN

The Rat Genome Database (RGD, https://rgd.mcw.edu) has evolved from simply a resource for rat genetic markers, maps, and genes, by adding multiple genomic data types and extensive disease and phenotype annotations and developing tools to effectively mine, analyze, and visualize the available data, to empower investigators in their hypothesis-driven research. Leveraging its robust and flexible infrastructure, RGD has added data for human and eight other model organisms (mouse, 13-lined ground squirrel, chinchilla, naked mole-rat, dog, pig, African green monkey/vervet, and bonobo) besides rat to enhance its translational aspect. This article presents an overview of the database with the most recent additions to RGD's genome, variant, and quantitative phenotype data. We also briefly introduce Virtual Comparative Map (VCMap), an updated tool that explores synteny between species as an improvement to RGD's suite of tools, followed by a discussion regarding the refinements to the existing PhenoMiner tool that assists researchers in finding and comparing quantitative data across rat strains. Collectively, RGD focuses on providing a continuously improving, consistent, and high-quality data resource for researchers while advancing data reproducibility and fulfilling Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.


Asunto(s)
Bases de Datos Genéticas , Genoma , Animales , Ratones , Humanos , Perros , Porcinos , Chlorocebus aethiops , Reproducibilidad de los Resultados , Genómica , Oligopéptidos
11.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37119810

RESUMEN

Rare diseases individually affect relatively few people, but as a group they impact considerable numbers of people. The Rat Genome Database (https://rgd.mcw.edu) is a knowledgebase that offers resources for rare disease research. This includes disease definitions, genes, quantitative trail loci (QTLs), genetic variants, annotations to published literature, links to external resources, and more. One important resource is identifying relevant cell lines and rat strains that serve as models for disease research. Diseases, genes, and strains have report pages with consolidated data, and links to analysis tools. Utilizing these globally accessible resources for rare disease research, potentiating discovery of mechanisms and new treatments, can point researchers toward solutions to alleviate the suffering of those afflicted with these diseases.


Asunto(s)
Genoma , Enfermedades Raras , Ratas , Animales , Genoma/genética , Enfermedades Raras/genética , Enfermedades Raras/terapia , Bases de Datos Genéticas
12.
Hum Genomics ; 5(2): 124-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21296746

RESUMEN

The Rat Genome Database (RGD) (http://rgd.mcw.edu) provides a comprehensive platform for comparative genomics and genetics research. RGD houses gene, QTL and polymorphic marker data for rat, mouse and human and provides easy access to data through sophisticated searches, disease portals, interactive pathway diagrams and rat and human genome browsers.


Asunto(s)
Bases de Datos Genéticas , Animales , Enfermedades Cardiovasculares/genética , Genoma , Humanos , Enfermedades Metabólicas/genética , Ratones , Modelos Genéticos , Neoplasias/genética , Enfermedades del Sistema Nervioso/genética , Obesidad/genética , Sistemas en Línea , Fenotipo , Sitios de Carácter Cuantitativo , Ratas
13.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380657

RESUMEN

Biological interpretation of a large amount of gene or protein data is complex. Ontology analysis tools are imperative in finding functional similarities through overrepresentation or enrichment of terms associated with the input gene or protein lists. However, most tools are limited by their ability to do ontology-specific and species-limited analyses. Furthermore, some enrichment tools are not updated frequently with recent information from databases, thus giving users inaccurate, outdated or uninformative data. Here, we present MOET or the Multi-Ontology Enrichment Tool (v.1 released in April 2019 and v.2 released in May 2021), an ontology analysis tool leveraging data that the Rat Genome Database (RGD) integrated from in-house expert curation and external databases including the National Center for Biotechnology Information (NCBI), Mouse Genome Informatics (MGI), The Kyoto Encyclopedia of Genes and Genomes (KEGG), The Gene Ontology Resource, UniProt-GOA, and others. Given a gene or protein list, MOET analysis identifies significantly overrepresented ontology terms using a hypergeometric test and provides nominal and Bonferroni corrected P-values and odds ratios for the overrepresented terms. The results are shown as a downloadable list of terms with and without Bonferroni correction, and a graph of the P-values and number of annotated genes for each term in the list. MOET can be accessed freely from https://rgd.mcw.edu/rgdweb/enrichment/start.html.


Asunto(s)
Bases de Datos Genéticas , Genoma , Animales , Ontología de Genes , Genoma/genética , Internet , Ratones , Ratas , Programas Informáticos
14.
Genes (Basel) ; 13(12)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36553571

RESUMEN

The COVID-19 pandemic stemmed a parallel upsurge in the scientific literature about SARS-CoV-2 infection and its health burden. The Rat Genome Database (RGD) created a COVID-19 Disease Portal to leverage information from the scientific literature. In the COVID-19 Portal, gene-disease associations are established by manual curation of PubMed literature. The portal contains data for nine ontologies related to COVID-19, an embedded enrichment analysis tool, as well as links to a toolkit. Using these information and tools, we performed analyses on the curated COVID-19 disease genes. As expected, Disease Ontology enrichment analysis showed that the COVID-19 gene set is highly enriched with coronavirus infectious disease and related diseases. However, other less related diseases were also highly enriched, such as liver and rheumatic diseases. Using the comparison heatmap tool, we found nearly 60 percent of the COVID-19 genes were associated with nervous system disease and 40 percent were associated with gastrointestinal disease. Our analysis confirms the role of the immune system in COVID-19 pathogenesis as shown by substantial enrichment of immune system related Gene Ontology terms. The information in RGD's COVID-19 disease portal can generate new hypotheses to potentiate novel therapies and prevention of acute and long-term complications of COVID-19.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Ratas , Animales , Humanos , COVID-19/genética , Pandemias , SARS-CoV-2/genética , Oligopéptidos
15.
Stroke ; 42(11): 3277-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21868728

RESUMEN

BACKGROUND AND PURPOSE: Ancrod, derived from Malayan pit viper venom, has been tested as ischemic stroke treatment in clinical trials with inconsistent results. We studied the actions of ancrod on fibrinolysis pathways in patient plasma samples and endothelial cell culture systems. METHODS: We analyzed fibrinogen levels during the first 6 hours of ancrod infusion in patients entered in the Stroke Treatment with Ancrod Trial. For the in vitro study, human brain microvascular endothelial cells incubated with plasminogen or with human brain microvascular endothelial cell-conditioned medium were co-incubated with ancrod and fibrinogen under normal or oxygen-glucose deprivation conditions over 6 hours. RESULTS: Fibrinogen levels decreased both in vivo and in vitro. Ancrod generated fibrinopeptide A, caused visible clot formation, and reduced levels of tissue-type plasminogen activator antigen in the human brain microvascular endothelial cell system and in a cell-free system with conditioned media. CONCLUSIONS: The in vitro results indicate that ancrod causes local fibrin formation and secondary depletion of tissue-type plasminogen activator by binding to fibrin clot. Ancrod-induced fibrin formation could result in cerebral microvascular occlusion and may explain the suboptimal clinical effects of ancrod in human stroke trials.


Asunto(s)
Ancrod/uso terapéutico , Fibrina/metabolismo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/tratamiento farmacológico , Células Cultivadas , Medios de Cultivo Condicionados , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos
16.
Cell Physiol Biochem ; 28(4): 631-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22178875

RESUMEN

BACKGROUND: Tissue plasminogen activator (tPA) regulates fibrinolysis and is routinely used as ischemic stroke pharmacotherapy. We hypothesized that brain microvascular tPA expression and barrier properties of endothelial cells are substantially related. METHODS: Human brain microvascular endothelial cells were incubated with two agents known to modify cAMP pathways: forskolin and rolipram. We analyzed development of endothelial barrier properties, i.e., trans-endothelial electrical resistance (TEER), permeability of endothelial cell monolayer, expression of influx transporter glut-1 and endothelial tight junction molecules occludin and claudin-5, tPA antigen release, and levels of endothelial tPA mRNA. RESULTS: Forskolin plus rolipram-treated endothelial cells showed increased TEER compared to controls (174±20% of control at day six, p<0.01), while permeability to albumin and 70kDa dextran was reduced (21±6.8% of control and 3.8±0.3% of control, respectively, p<0.001). In addition, occludin and claudin-5 protein were up-regulated, occludin mRNA was increased to 206±60% of control (p<0.05), glut-1 mRNA was increased to 196±68% of control (p<0.05), levels of tPA protein were reduced to 35±7.0% of control (p<0.001) after six days, and tPA mRNA was reduced to 32±7.7% of control (p<0.01). TPA and occludin mRNA levels were inversely associated (r=-0.68, p<0.05). CONCLUSIONS: In this in vitro model, barrier properties were strongly linked (by inverse association) with tPA expression of brain microvascular endothelial cells.


Asunto(s)
Células Endoteliales/fisiología , Activador de Tejido Plasminógeno/metabolismo , Permeabilidad de la Membrana Celular , Células Cultivadas , Claudina-5 , Claudinas/metabolismo , Colforsina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Endotelio Vascular/citología , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ocludina , ARN Mensajero/metabolismo , Rolipram/farmacología , Uniones Estrechas/metabolismo , Activador de Tejido Plasminógeno/genética
17.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938777

RESUMEN

The laboratory rat has been widely used as an animal model in biomedical research. There are many strains exhibiting a wide variety of phenotypes. Capturing these phenotypes in a centralized database provides researchers with an easy method for choosing the appropriate strains for their studies. Existing resources have provided some preliminary work in rat phenotype databases. However, existing resources suffer from problems such as small number of animals, lack of updating, web interface queries limitations and lack of standardized metadata. The Rat Genome Database (RGD) PhenoMiner tool has provided the first step in this effort by standardizing and integrating data from individual studies. Our work, mainly utilizing data curated in RGD, involves the following key steps: (i) we developed a meta-analysis pipeline to automatically integrate data from heterogeneous sources and to produce expected ranges (standardized phenotype ranges) for different strains and phenotypes under different experimental conditions; (ii) we created tools to visualize expected ranges for individual strains and strain groups. We developed a meta-analysis pipeline and an interactive web interface that summarizes and visualizes expected ranges produced from the meta-analysis pipeline. Automation of the pipeline allows for updates as additional data becomes available. The interactive web interface provides curators and researchers with a platform for identifying and validating expected ranges for a variety of quantitative phenotypes. The data analysis result and visualization tools will promote an understanding of rat disease models, guide researchers to choose optimal strains for their research needs and encourage data sharing from different research hubs. Such resources also help to promote research reproducibility. The interactive platforms created in this project will continue to provide a valuable resource for translational research efforts.


Asunto(s)
Modelos Animales de Enfermedad , Animales , Presión Sanguínea , Peso Corporal , Bases de Datos Genéticas , Femenino , Genoma , Masculino , Metaanálisis como Asunto , Modelos Biológicos , Fenotipo , Sesgo de Publicación , Control de Calidad , Ratas , Programas Informáticos , Sístole
18.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753478

RESUMEN

Rats have been used as research models in biomedical research for over 150 years. These disease models arise from naturally occurring mutations, selective breeding and, more recently, genome manipulation. Through the innovation of genome-editing technologies, genome-modified rats provide precision models of disease by disrupting or complementing targeted genes. To facilitate the use of these data produced from rat disease models, the Rat Genome Database (RGD) organizes rat strains and annotates these strains with disease and qualitative phenotype terms as well as quantitative phenotype measurements. From the curated quantitative data, the expected phenotype profile ranges were established through a meta-analysis pipeline using inbred rat strains in control conditions. The disease and qualitative phenotype annotations are propagated to their associated genes and alleles if applicable. Currently, RGD has curated nearly 1300 rat strains with disease/phenotype annotations and about 11% of them have known allele associations. All of the annotations (disease and phenotype) are integrated and displayed on the strain, gene and allele report pages. Finding disease and phenotype models at RGD can be done by searching for terms in the ontology browser, browsing the disease or phenotype ontology branches or entering keywords in the general search. Use cases are provided to show different targeted searches of rat strains at RGD.


Asunto(s)
Curaduría de Datos , Minería de Datos , Bases de Datos Genéticas , Enfermedad/genética , Genoma , Animales , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Anotación de Secuencia Molecular , Fenotipo , Ratas
19.
Methods Mol Biol ; 2018: 71-96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31228152

RESUMEN

Resources for rat researchers are extensive, including strain repositories and databases all around the world. The Rat Genome Database (RGD) serves as the primary rat data repository, providing both manual and computationally collected data from other databases.


Asunto(s)
Bases de Datos Factuales , Genoma , Modelos Animales , Animales , Investigación Biomédica , Anotación de Secuencia Molecular , Fenotipo , Sitios de Carácter Cuantitativo , Ratas
20.
Biotechnol Bioeng ; 100(6): 1205-13, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18553401

RESUMEN

The chemokine receptor CXCR4 and its ligand CXCL12 play an important role in breast cancer invasion and metastasis, and induce the chemotaxis of various types of cancer cells. Previous studies of CXCL12-induced chemotaxis have, for the most part, relied on endpoint assays (e.g., transwell assays) that provide poor control over the cell microenvironment. Specifically, these assays lacked the ability to dissect the role that autocrine and paracrine growth factors play in chemokine-induced cancer cell chemotaxis. Here, we employ a microfluidic chemotaxis chamber that allows the effects of specific exogenous factors on cell migration to be directly characterized, without the interference of autocrine/paracrine signaling. Using this approach, we investigated the migration of MDA-MB-231 breast cancer cells in well-defined CXCL12 gradients. We found that CXCL12 alone failed to stimulate chemotaxis of these cells; however, when the CXCL12 gradient was supplemented with a uniform stimulus of either EGF or conditioned media, a directional response was induced. This dependence on growth factor signaling points to the importance of autocrine and paracrine factors in determining the migratory response of the cells, and may play an important role in cancer metastasis.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias de la Mama/metabolismo , Quimiocina CXCL12/farmacología , Quimiotaxis/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Técnicas Analíticas Microfluídicas , Receptores CXCR4/metabolismo , Proyectos de Investigación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA