Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chim Acta ; 1322: 343031, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182985

RESUMEN

Single-atom nanozymes have garnered significant attention due to their exceptional atom utilization and ability to establish well-defined structure-activity relationships. However, conventional pyrolytic synthesis methods pose challenges such as high energy consumption and random local environments at the active sites, while achieving non-pyrolytic synthesis of single-atom nanozymes remains a formidable technical hurdle. The present study focuses on the synthesis of laccase-like iron-based single-atom nanozymes (Fe-SAzymes) using a non-pyrolysis method facilitated by microwave irradiation. Under low iron loading conditions, Fe-SAzymes exhibited significantly enhanced laccase activity (12.1 U/mg), surpassing that of laccase by 24-fold. Moreover, Fe-SAzymes demonstrated efficient catalytic oxidation of epinephrine (EP), enabling its colorimetric detection. Owing to the remarkable laccase activity of Fe-SAzymes, the conventional nanozymes EP detection time was reduced from 60 min to 20 min, with an impressive low detection limit as low as 2.95 µM. In addition, an ultra-sensitive fluorescence method for EP detection was developed using the internal filter effect of EP oxidation products and CDs combined with carbon dots probe. The detection limit of fluorescence method was only 0.39 µM. Therefore, an visual, fast, and highly sensitive dual-mode EP detection strategy has great potential in the clinical diagnostic industry.


Asunto(s)
Colorimetría , Epinefrina , Hierro , Lacasa , Lacasa/química , Lacasa/metabolismo , Colorimetría/métodos , Epinefrina/análisis , Hierro/química , Espectrometría de Fluorescencia , Límite de Detección , Nanoestructuras/química , Oxidación-Reducción , Fluorescencia , Microondas
2.
Talanta ; 279: 126621, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079437

RESUMEN

Iron-anchored nitrogen/doped carbon single-atom nanozymes (Fe-N/C), which possess homogeneous active sites and adjustable catalytic environment, represent an exemplary model for investigating the structure-function relationship and catalytic activity. However, the development of pyrolysis-free synthesis technique for Fe-N/C with adjustable enzyme-mimicking activity still presents a significant challenge. Herein, Fe-N/C anchored three carrier morphologies were created via a pyrolysis-free approach by covalent organic polymers. The peroxidase-like activity of these Fe-N/C nanozymes was regulated via the pores of the anchored carrier, resulting in varying electron transfer efficiency due to disparities in contact efficacy between substrates and catalytic sites within diverse microenvironments. Additionally, a colorimetric sensor array for identifying antioxidants was developed: (1) the Fe-N/C catalytically oxidized two substrates TMB and ABTS, respectively; (2) the development of a colorimetric sensor array utilizing oxTMB and oxABTS as sensing channels enabled accurate discrimination of antioxidants such as ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), gallic acid (GA), and caffeic acid (CA). Subsequently, the sensor array underwent rigorous testing to validate its performance, including assessment of antioxidant mixtures and individual antioxidants at varying concentrations, as well as target antioxidants and interfering substances. In general, the present study offered valuable insights into the active origin and rational design of nanozyme materials, and highlighting their potential applications in food analysis.


Asunto(s)
Antioxidantes , Carbono , Colorimetría , Hierro , Nitrógeno , Colorimetría/métodos , Antioxidantes/análisis , Antioxidantes/química , Nitrógeno/química , Hierro/química , Hierro/análisis , Carbono/química , Ácido Gálico/química , Ácido Gálico/análisis , Catálisis , Bencidinas/química , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Nanoestructuras/química , Benzotiazoles/química , Glutatión/análisis , Glutatión/química , Ácidos Cafeicos/análisis , Ácidos Cafeicos/química , Cisteína/análisis , Cisteína/química , Ácidos Sulfónicos/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA