Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 182, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285115

RESUMEN

Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.


Asunto(s)
Apoptosis , Industrias , Animales , Cricetinae , Humanos , Células CHO , Cricetulus , Proteolisis
2.
Appl Microbiol Biotechnol ; 108(1): 467, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292268

RESUMEN

Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 µM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Epigénesis Genética , Proteínas Recombinantes , Células CHO , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Histonas/genética , Acetilación , Cricetinae , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Metilación
3.
Yi Chuan ; 46(9): 673-676, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275867

RESUMEN

From Mendel's discovery of the basic laws of genetics in 1865 to the widespread application of genomics in medicine today, medical genetics has made enormous progress, and the concept of genetic diseases has also been evolved. In 1972, the World Health Organization (WHO) expert group began to use "Genetic Disease" to define hereditary diseases, while early Chinese genetics textbooks used "inferior inheritance", and later introduced terms such as "Genetic Disease" and "Inherited Disease". In the early days, it was generally believed that genetic diseases were inherited from ancestors. However, research in recent years has found that genetic diseases are not necessarily inherited, and some diseases are actually caused by de novo mutations in the offspring. Although the occurrence of this type of genetic disease is related to genetic factors, it is not inherited from ancestors. If we still use "Inherited Disease" or "Hereditary Disease" to describe it, it is not accurate enough. In order to further standardize the translation and use of the concept of "Genetic Disease", this article briefly reviews its development process in both English and Chinese literature, discusses the difference between different Chinese translations, and provides guidance and suggestions for scientifically and accurately describing genetic diseases in Chinese, with a view to promote efficient exchange and cooperation in the field of medical genetics.


Asunto(s)
Enfermedades Genéticas Congénitas , Enfermedades Genéticas Congénitas/genética , Humanos , China , Terminología como Asunto
4.
Appl Microbiol Biotechnol ; 107(4): 1063-1075, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648523

RESUMEN

Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetinae , Animales , Humanos , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo , Inmunoglobulinas
5.
J Clin Pharm Ther ; 47(2): 237-242, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34755375

RESUMEN

WHAT IS KNOWN AND OBJECTIVES: Dapagliflozin was the first oral treatment approved in type 1 diabetes mellitus (T1DM) patients, simultaneously improving body weight. However, the time course and dose effect of dapagliflozin on loss of weight in T1DM patients was still unknown. The present study aimed to investigate quantitative relationship between dapagliflozin and loss of weight in T1DM patients based on Model-based Meta-analysis. METHODS: Five dapagliflozin dosage groups, two of them were 5 mg/day and three of them were 10 mg/day, 1612 T1DM patients were analysed with maximal effect (Emax ) model, and evaluation index was change rate of body weight from baseline value. RESULTS: In these T1DM patients, dosages were not incorporated into model, indicating no significant dose-response relationship between 5 and 10 mg/day affecting loss of weight. Emax and the treatment duration to reach half of the maximal effects (ET50 ) of dapagliflozin influencing loss of weight in T1DM patients were -4.9% and 10.4 weeks, and the duration to achieve 25%, 50%, 75%, and 80% (plateau) of Emax were 3.5, 10.4, 31.2, and 41.6 weeks. WHAT IS NEW AND CONCLUSIONS: It was the first time to explore quantitative relationship between dapagliflozin and loss of weight in T1DM patients. To achieve the plateau period in loss of weight, 5 mg/day dapagliflozin was required for at least 41.6 weeks.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucósidos/uso terapéutico , Hipoglucemiantes/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Factores de Edad , Compuestos de Bencidrilo/administración & dosificación , Peso Corporal , Relación Dosis-Respuesta a Droga , Glucósidos/administración & dosificación , Humanos , Hipoglucemiantes/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos
6.
Appl Microbiol Biotechnol ; 105(2): 525-538, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394152

RESUMEN

Gene delivery systems play a vital role in gene therapy and recombinant protein production. The advantages of using gene delivery reagents for non-viral vector include the capacity to accommodate a large packaging load and their low or absent immunogenicity. Furthermore, they are easy to produce at a large scale and preserve. Gene delivery reagents for non-viral vector are commonly used for transfecting a variety of cells and tissues. It is mainly composed of liposomes and non-liposome cationic polymers. According to the different head structures used, the non-viral cationic transfection reagents include a quaternary ammonium salt, amine, amino acid or polypeptide, guanidine salt, and a heterocyclic ring. This article summarizes these approaches and developments of types and components of transfection reagents and optimization of gene delivery. The optimization of mammalian cell transient recombinant protein expression system and cationic reagents for clinical or clinical trials are also discussed.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Animales , Cationes , Indicadores y Reactivos , Transfección
7.
Biomed Chromatogr ; 35(3): e4998, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33037660

RESUMEN

Isoliquiritigenin (ILG) and isoliquiritin (ILQ), two kinds of major flavonoids in licorice, are biological active substances with antioxidant, anti-inflammatory, and tumor-suppressive effects. However, their in vivo metabolites, possible material basis of this two licorice chalcones for the treatment of diseases, have not been studied completely. To determine the metabolism of ILG and ILQ, after oral administration of 100 mg/kg/day of these compounds for consecutive 8 days, the metabolites of these two licorice chalcones in mice plasma, urine, feces, and bile were determined using liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry in this study. The structures of those metabolites were tentatively identified according to their fragment pathways, accurate masses, characteristic product ions, metabolism law, and reference standards-matching. As a result, a total of 25 and 29 metabolites of ILG and ILQ were identified, respectively. Seven main metabolic pathways, oxidation and reduction, deglycosylation and glycosylation, dehydroxylation and hydroxylation, demethoxylation and methoxylation, acetylation, glucuronidation, and sulfation, were summarized to tentatively explain how the metabolites were biologically transformed. These results provide the important information on the metabolism of ILG and ILQ, which may be helpful for the further research of their pharmacological mechanism.


Asunto(s)
Chalcona/análogos & derivados , Chalconas/análisis , Cromatografía Liquida/métodos , Glucósidos/análisis , Espectrometría de Masas en Tándem/métodos , Administración Oral , Animales , Bilis/química , Chalcona/administración & dosificación , Chalcona/análisis , Chalcona/química , Chalcona/farmacocinética , Chalconas/administración & dosificación , Chalconas/química , Chalconas/farmacocinética , Heces/química , Glucósidos/administración & dosificación , Glucósidos/química , Glucósidos/farmacocinética , Glycyrrhiza , Ratones , Ratones Endogámicos C57BL
8.
Crit Rev Biotechnol ; 40(7): 1035-1043, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32777953

RESUMEN

Mammalian cells are the preferred choice system for the production of complex molecules, such as recombinant therapeutic proteins. Although the technology for increasing the yield of proteins has improved rapidly, the process of selecting, identifying as well as maintaining high-yield cell clones is still troublesome, time-consuming and usually uncertain. Optimization of expression vectors is one of the most effective methods for enhancing protein expression levels. Several commonly used chromatin-modifying elements, including the matrix attachment region, ubiquitous chromatin opening elements, insulators, stabilizing anti-repressor elements can be used to increase the expression level and stability of recombinant proteins. In this review, these chromatin-modifying elements used for the expression vector optimization in mammalian cells are summarized, and future strategies for the utilization of expression cassettes are also discussed.


Asunto(s)
Cromatina/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Vectores Genéticos/genética , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Mol Biol Rep ; 47(7): 5185-5190, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32564228

RESUMEN

The aim of this study was to construct an expression vector mediated by the dual promoter that can simultaneously drive the recombinant protein production in eukaryotic and prokaryotic cells. The prokaryotic T7 promoter and ribosome binding site (RBS) was cloned downstream of CMV promoter in the eukaryotic expression vector pIRES-neo, and T7 termination sequence was inserted upstream of neomycin phosphotransferase gene to generate the dual promoter vector. The enhanced green fluorescent protein (eGFP) gene was used as reporter gene. Then, the resultant vector was transfected into Chinese hamster ovary (CHO) cells and transformed into Escherichia coli (E. coli) BL21, and the eGFP expression levels were analyzed by fluorescence microscopy, flow cytometry and Western blot, respectively. Fluorescence microscopy revealed that the eGFP was expressed in both CHO cells and E. coli BL21. Flow cytometry showed that the eGFP expression level had no significant difference between the dual promoter vector and control vector in transfected CHO cells. Western blot analysis indicated the eGFP expressed in transformed E. coli. In conclusion, a prokaryotic-eukaryotic double expression vector was successfully constructed, which has potential applications in rapid cloning and expression of recombinant proteins in both prokaryotic and eukaryotic expression systems.


Asunto(s)
Ingeniería Genética/métodos , Vectores Genéticos/genética , Regiones Promotoras Genéticas , Animales , Células CHO , Cricetinae , Cricetulus , Escherichia coli , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
10.
Mol Biol Rep ; 47(1): 469-475, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31659692

RESUMEN

Multicistronic vectors can increase transgene expression and decrease the imbalance of gene expression in the Chinese hamster ovary (CHO) cell expression system. Small, self-cleaving 2A peptides have a high cleavage efficiency and are essential for constructing high-expression multicistronic vectors. In this study, we investigated the effects of two different 2A peptides on transgene expression in CHO cells via their mediating action on tricistronic vectors. The enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) genes were linked by the porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) peptides in a multicistronic vector. We transfected CHO cells with these vectors and screened for the presence of blasticidin-resistant colonies. Flow cytometry and real-time quantitative PCR (qPCR) were used to detect the expression levels of eGFP and RFP and the copy numbers of stably transfected cells. The results showed that P2A could enhance eGFP and RFP expression by 1.48- and 1.47-fold, respectively, compared to T2A. The expression levels of the genes were not proportional to their copy numbers. In conclusion, we found that P2A can effectively drive transgene expression in CHO cells and a potent 2A peptide can be used for recombinant protein production in the CHO cell system.


Asunto(s)
Vectores Genéticos/genética , Péptidos/genética , Proteínas Recombinantes/genética , Transgenes/genética , Animales , Células CHO , Cricetinae , Cricetulus , Dosificación de Gen , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfección , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Appl Microbiol Biotechnol ; 104(13): 5673-5688, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32372203

RESUMEN

Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.


Asunto(s)
Vectores Genéticos/genética , Proteínas Recombinantes/biosíntesis , Animales , Línea Celular , Epigénesis Genética , Expresión Génica , Ingeniería Genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , Elementos Reguladores de la Transcripción
12.
Biotechnol Lett ; 42(2): 187-196, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31776751

RESUMEN

OBJECTIVES: Previously, we have found that the matrix attachment region (MAR) may confer a 'distance effect' on transgene expression. This work aims to systematically explore the increased transgene expression in transfected Chinese hamster ovary (CHO) cells due to the characteristics of MAR and its mechanism. RESULTS: Compared with the control vector, 500 and 1000 bp DNA distances between MAR and the cytomegalovirus promoter can increase transgene expression by 1.77- and 1.56-fold, respectively. Meanwhile, transgene expression was not affected when 2000 and 2500 bp spacer DNAs were inserted, but a declining trend was observed when a 1500 bp spacer DNA was inserted. The vector containing a 500 bp DNA distance significantly increased the expression of the enhanced green fluorescent protein, and this increase was not related to transgene copy numbers. CONCLUSIONS: A short DNA distance-containing MAR confers high transgene expression level in transfected CHO cells, but a distance threshold does not exist in the vector system.


Asunto(s)
Clonación Molecular/métodos , Proteínas Recombinantes/metabolismo , Transgenes , Animales , Células CHO , Cricetinae , Cricetulus , Expresión Génica , Regiones de Fijación a la Matriz , Regiones Promotoras Genéticas , Transfección
13.
J Cell Mol Med ; 23(2): 1613-1616, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30450759

RESUMEN

Matrix attachment regions (MARs) can enhance the expression level of transgene in Chinese hamster ovaries (CHO) cell expression system. However, improvements in function and analyses of the mechanism remains unclear. In this study, we screened two new and more functional MAR elements from the human genome DNA. The human MAR-3 and MAR-7 element were cloned and inserted downstream of the polyA site in a eukaryotic vector. The constructs were transfected into CHO cells, and screened under G418 to produce the stably transfected cell pools. The expression levels and stability of enhanced green fluorescent protein (eGFP) were detected by flow cytometry. The transgene copy number and transgene expression at mRNA level were detected by quantitative real-time PCR. The results showed that the expression level of eGFP of cells transfected with MAR-containing vectors were all higher than those of the vectors without MARs under transient and stably transfection. The enhancing effect of MAR-7 was higher than that of MAR-3. Additionally, we found that MAR significantly increased eGFP copy numbers and eGFP gene mRNA expression level as compared with the vector without. In conclusion, MAR-3 and MAR-7 gene can promote the expression of transgene in transfected CHO cells, and its effect may be related to the increase of the number of copies.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Regiones de Fijación a la Matriz/genética , Animales , Células CHO , Cricetulus , Regulación del Desarrollo de la Expresión Génica/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Transfección , Transgenes/genética
14.
J Cell Biochem ; 120(8): 13985-13993, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30957285

RESUMEN

Matrix attachment regions (MARs) can enhance transgene expression levels and maintain stability. However, the consensus sequence from MARs and its functional analysis remains to be examined. Here, we assessed a possible consensus sequence from MARs and assessed its activity in stably transfected Chinese hamster ovary (CHO) cells. First, we analyzed the effects of 10 MARs on transfected CHO cells and then analyzed the consensus motifs from these MARs using a bioinformatics method. The consensus sequence was synthesized and cloned upstream or downstream of the eukaryotic vector. The constructs were transfected into CHO cells and the expression levels and stability of enhanced green fluorescent protein were detected by flow cytometry. The results indicated that eight of the ten MARs increased transgene expression in transfected CHO cells. Three consensus motifs were found after bioinformatics analyses. The consensus sequence tandemly enhanced transgene expression when it was inserted into the eukaryotic expression vector; the effect of the addition upstream was stronger than that downstream. Thus, we found a MAR consensus sequence that may regulate the MAR-mediated increase in transgene expression.


Asunto(s)
Secuencia de Consenso/genética , Regiones de Fijación a la Matriz/genética , Transfección , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Dosificación de Gen , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Recombinantes/metabolismo , Transgenes
15.
J Cell Biochem ; 120(10): 18478-18486, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31168866

RESUMEN

Matrix attachment regions (MARs) are DNA fragments with specific motifs that enhance transgenic expression; however, the characteristics and functions of these elements remain unclear. In this study, we designed and synthesized three short chimeric MARs, namely, SM4, SM5, and SM6, with different numbers and orders of motifs on the basis of the features and motifs of previously reported MARs, namely, SM1, SM2, and SM3, respectively. Expression vectors with six synthetic MARs flanking the down or upstream of the expression cassette for enhanced green fluorescence protein (EGFP) were constructed and introduced into Chinese hamster ovary (CHO) cells. Results indicated that the EGFP expression of the CHO cells with transfection bySM4, SM5, or SM6-containing vectors was higher than that of those containing SM1, SM2, or SM3 regardless of the MAR insertion position. The improving effect of SM5 was particularly pronounced. Transgenic expression was further enhanced with the increasing SM5 copy number. Bioinformatics analysis indicated that several arrangements of the DNA-binding motifs for CEBP, FAST, Hox, glutathione, and NMP4 may help increase transgenic expression levels and the average population of highly expressed cells. Our findings on novel synthetic MARs will help establish stable expression systems in mammalian cells.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Animales , Células CHO , Biología Computacional , Cricetinae , Cricetulus , Vectores Genéticos/genética , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Estabilidad Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
J Cell Biochem ; 120(9): 15661-15670, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074065

RESUMEN

Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2'-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.


Asunto(s)
ADN/genética , Terapia Genética , Plásmidos/genética , Transgenes/genética , Animales , Células CHO , Cricetinae , Cricetulus , Metilasas de Modificación del ADN/genética , Vectores Genéticos/genética , Regiones de Fijación a la Matriz/genética , Regiones Promotoras Genéticas , Transfección
17.
Biotechnol Lett ; 41(6-7): 701-709, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953310

RESUMEN

OBJECTIVES: To investigate the effect of full-length fragment of DNA topoisomerase I gene (TOP1) matrix attachment regions (MARs) originating from the human genome on transgene expression in Chinese hamster ovary (CHO) cells and explore the underlying mechanisms. RESULTS: Results showed that TOP1 MAR cannot only enhance the transient and stable transgenic expression of enhanced green fluorescence protein (EGFP) but also increase long-term stability and ratio of positive colonies in transfected CHO cells with TOP1 MAR at the 5' or 3' ends of the EGFP expression cassette. Interestingly, the CHO cells were transfected with the 5',3' TOP1 MAR-containing vector featured the highest transient and stable expression, whereas those with the 3' TOP1 MAR-containing vector exhibited the most effective stability and ratio of positive colonies. We also observed that transgene copy numbers and mRNA of egfp gene were correlated with the expression levels of EGFP protein in polyclonal CHO cells. However, the heterogeneity of expression in monoclonal CHO cells was unaffected by transgene copy number. CONCLUSIONS: The findings may aid in the potential application of TOP1 MAR in expression enhancement of recombinant proteins in mammalian cells.


Asunto(s)
Células CHO , Ingeniería Celular/métodos , ADN-Topoisomerasas de Tipo I/genética , Expresión Génica , Proteínas Fluorescentes Verdes/biosíntesis , Regiones de Fijación a la Matriz , Proteínas Recombinantes/biosíntesis , Animales , Cricetulus , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Recombinantes/genética
18.
J Cell Mol Med ; 22(4): 2231-2239, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29441681

RESUMEN

Chinese hamster ovary (CHO) cells have become the most widely utilized mammalian cell line for the production of recombinant proteins. However, the product yield and transgene instability need to be further increased and solved. In this study, we investigated the effect of five different introns on transgene expression in CHO cells. hCMV intron A, adenovirus tripartite leader sequence intron, SV40 intron, Chinese hamster EF-1alpha gene intron 1 and intervening sequence intron were cloned downstream of the eGFP expression cassette in a eukaryotic vector, which was then transfected into CHO cells. qRT-PCR and flow cytometry were used to explore eGFP expression levels. And gene copy number was also detected by qPCR, respectively. Furthermore, the erythropoietin (EPO) protein was used to test the selected more strong intron. The results showed that SV40 intron exhibited the highest transgene expression level among the five compared intron elements under transient and stable transfections. In addition, the SV40 intron element can increase the ratio of positive colonies and decrease the coefficient of variation in transgene expression level. Moreover, the transgene expression level was not related to the gene copy number in stable transfected CHO cells. Also, the SV40 intron induced higher level of EPO expression than IVS intron in transfected CHO cell. In conclusion, SV40 intron is a potent strong intron element that increases transgene expression, which can readily be used to more efficient transgenic protein production in CHO cells.


Asunto(s)
Intrones/genética , Virus 40 de los Simios/genética , Transfección/métodos , Transgenes , Animales , Células CHO , Cricetinae , Cricetulus , Eritropoyetina/metabolismo , Dosificación de Gen , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes/metabolismo
19.
J Cell Mol Med ; 22(9): 4106-4116, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29851281

RESUMEN

CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , ADN (Citosina-5-)-Metiltransferasas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Transgenes , Animales , Secuencia de Bases , Células CHO , Proteína 9 Asociada a CRISPR/metabolismo , Islas de CpG , Cricetulus , Citomegalovirus/genética , Citomegalovirus/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , Expresión Génica , Técnicas de Inactivación de Genes , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo
20.
J Cell Mol Med ; 22(2): 1095-1102, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29077269

RESUMEN

Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.


Asunto(s)
Genoma Humano , Regiones de Fijación a la Matriz/genética , Transfección , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Dosificación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA