Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 181-188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778098

RESUMEN

Digital pathology poses unique computational challenges, as a standard gigapixel slide may comprise tens of thousands of image tiles1-3. Prior models have often resorted to subsampling a small portion of tiles for each slide, thus missing the important slide-level context4. Here we present Prov-GigaPath, a whole-slide pathology foundation model pretrained on 1.3 billion 256 × 256 pathology image tiles in 171,189 whole slides from Providence, a large US health network comprising 28 cancer centres. The slides originated from more than 30,000 patients covering 31 major tissue types. To pretrain Prov-GigaPath, we propose GigaPath, a novel vision transformer architecture for pretraining gigapixel pathology slides. To scale GigaPath for slide-level learning with tens of thousands of image tiles, GigaPath adapts the newly developed LongNet5 method to digital pathology. To evaluate Prov-GigaPath, we construct a digital pathology benchmark comprising 9 cancer subtyping tasks and 17 pathomics tasks, using both Providence and TCGA data6. With large-scale pretraining and ultra-large-context modelling, Prov-GigaPath attains state-of-the-art performance on 25 out of 26 tasks, with significant improvement over the second-best method on 18 tasks. We further demonstrate the potential of Prov-GigaPath on vision-language pretraining for pathology7,8 by incorporating the pathology reports. In sum, Prov-GigaPath is an open-weight foundation model that achieves state-of-the-art performance on various digital pathology tasks, demonstrating the importance of real-world data and whole-slide modelling.


Asunto(s)
Conjuntos de Datos como Asunto , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Patología Clínica , Humanos , Benchmarking , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/clasificación , Neoplasias/diagnóstico , Neoplasias/patología , Patología Clínica/métodos , Masculino , Femenino
2.
Nature ; 613(7943): 274-279, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631650

RESUMEN

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

3.
Nature ; 601(7891): 118-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912121

RESUMEN

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Fibroblastos/inmunología , Piel/inmunología , Piel/patología , Vitíligo/inmunología , Vitíligo/patología , Adolescente , Adulto , Animales , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/inmunología , Niño , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Humanos , Interferón gamma/inmunología , Masculino , Melanocitos/inmunología , Melanocitos/patología , Ratones , Persona de Mediana Edad , Comunicación Paracrina , RNA-Seq , Análisis de la Célula Individual , Células del Estroma/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto Joven
4.
Plant Cell ; 36(7): 2531-2549, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526222

RESUMEN

Histospecification and morphogenesis of anthers during development in Arabidopsis (Arabidopsis thaliana) are well understood. However, the regulatory mechanism of microsporocyte generation at the pre-meiotic stage remains unclear, especially how archesporial cells are specified and differentiate into 2 cell lineages with distinct developmental fates. SPOROCYTELESS (SPL) is a key reproductive gene that is activated during early anther development and remains active. In this study, we demonstrated that the EAR motif-containing adaptor protein (ECAP) interacts with the Gro/Tup1 family corepressor LEUNIG (LUG) and the BES1/BZR1 HOMOLOG3 (BEH3) transcription factor to form a transcription activator complex, epigenetically regulating SPL transcription. SPL participates in microsporocyte generation by modulating the specification of archesporial cells and the archesporial cell-derived differentiation of somatic and reproductive cell layers. This study illustrates the regulation of SPL expression by the ECAP-LUG-BEH3 complex, which is essential for the generation of microsporocytes. Moreover, our findings identified ECAP as a key transcription regulator that can combine with different partners to regulate gene expression in distinct ways, thereby facilitating diverse processes in various aspects of plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Polen/genética , Polen/metabolismo , Polen/crecimiento & desarrollo , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Proteínas Nucleares
5.
Proc Natl Acad Sci U S A ; 120(44): e2306932120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874855

RESUMEN

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Bacillus thuringiensis/genética , Spodoptera/genética , Toxinas de Bacillus thuringiensis/metabolismo , Regulación hacia Abajo , Factores de Transcripción/metabolismo , Estudio de Asociación del Genoma Completo , Insecticidas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/metabolismo , Productos Agrícolas/genética , Endotoxinas/genética , Endotoxinas/farmacología , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética , Larva/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
6.
J Am Soc Nephrol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913434

RESUMEN

BACKGROUND: Chronic Angiotensin-II (Ang-II) perfusion stimulates Kir4.1/Kir5.1 of the DCT via angiotensin-II-type-1a-receptor (AT1aR) and low-sodium-intake also stimulates Kir4.1/Kir5.1. However, it is not explored the role of AT1aR in mediating the effect of LS on Kir4.1/Kir5.1. METHODS: We used patch-clamp-technique to examine Kir4.1/Kir5.1 activity of the DCT, employed immunoblotting to examine NCC expression/activity, and used in vivo perfusion-technique to measure renal-Na+ and renal-K+-excretion in control, kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) and DCT-specific-AT1aR-knockout mice (DCT-AT1aR- KO). RESULTS: Ang-II acutely stimulated 40-pS-K+ channel (Kir4.1/Kir5.1-heterotetramer), increased whole-cell Kir4.1/Kir5.1-mediated K+-currents and the negativity of DCT-membrane-potential only in late-DCT2 but not in early-DCT. Acute Ang-II increased thiazide-induced renal Na+-excretion (ENa). The effect of Ang-II on Kir4.1/Kir5.1 and HCTZ-induced-ENa was absent in Ks-AT1aR-KO mice. Overnight-low-salt stimulated the expression of Agtr1a mRNA in DCT, increased whole-cell Kir4.1/Kir5.1-mediated K+-currents in late-DCT, hyperpolarized late-DCT membrane, augmented the expression of phosphor-Na-Cl-cotransporter (pNCC) and enhanced thiazide-induced renal-ENa in the control mice. However, the effect of overnight-low-salt on Kir4.1/Kir5.1-activity, DCT membrane potential and NCC activity/expression was abolished in DCT-AT1aR-KO or Ks-AT1aR-KO mice. Overnight-low-salt had no effect on baseline renal K+-excretion (EK) and plasma K+-concentrations in the control mice but it increased baseline renal-EK and decreased plasma K+-concentrations in DCT-AT1aR-KO or in Ks-AT1aR-KO mice. CONCLUSIONS: Acute Ang-II or overnight-LS stimulated Kir4.1/Kir5.1 in late-DCT and that AT1aR was responsible for acute Ang-II or overnight-low-salt-induced stimulation of Kir4.1/Kir5.1 and NCC. AT1aR of the DCT plays a role in maintaining adequate baseline renal-EK and plasma K+ concentrations during overnight-LS.

7.
Anal Chem ; 96(17): 6683-6691, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619493

RESUMEN

Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 µM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.


Asunto(s)
Ácido Ascórbico , Encéfalo , Técnicas Electroquímicas , Peróxido de Hidrógeno , Nanotubos de Carbono , Peróxido de Hidrógeno/análisis , Ácido Ascórbico/análisis , Animales , Ratones , Encéfalo/metabolismo , Nanotubos de Carbono/química , Técnicas Biosensibles , Electrodos
8.
Small ; 20(26): e2310700, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483007

RESUMEN

Single-cell mass spectrometry (MS) is significant in biochemical analysis and holds great potential in biomedical applications. Efficient sample preparation like sorting (i.e., separating target cells from the mixed population) and desalting (i.e., moving the cells off non-volatile salt solution) is urgently required in single-cell MS. However, traditional sample preparation methods suffer from complicated operation with various apparatus, or insufficient performance. Herein, a one-step sample preparation strategy by leveraging label-free impedance flow cytometry (IFC) based microfluidics is proposed. Specifically, the IFC framework to characterize and sort single-cells is adopted. Simultaneously with sorting, the target cell is transferred from the local high-salinity buffer to the MS-compatible solution. In this way, one-step sorting and desalting are achieved and the collected cells can be directly fed for MS analysis. A high sorting efficiency (>99%), cancer cell purity (≈87%), and desalting efficiency (>99%), and the whole workflow of impedance-based separation and MS analysis of normal cells (MCF-10A) and cancer cells (MDA-MB-468) are verified. As a standalone sample preparation module, the microfluidic chip is compatible with a variety of MS analysis methods, and envisioned to provide a new paradigm in efficient MS sample preparation, and further in multi-modal (i.e., electrical and metabolic) characterization of single-cells.


Asunto(s)
Impedancia Eléctrica , Citometría de Flujo , Espectrometría de Masas , Microfluídica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Citometría de Flujo/métodos , Espectrometría de Masas/métodos , Microfluídica/métodos , Línea Celular Tumoral
9.
Mol Ecol ; 33(4): e17249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38133544

RESUMEN

Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.


Asunto(s)
Diapausa , Escifozoos , Animales , Escifozoos/genética , Temperatura , Diapausa/genética
10.
Opt Lett ; 49(9): 2401-2404, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691729

RESUMEN

Transition-metal dichalcogenides (TMDCs), as emerging optoelectronic materials, necessitate the establishment of an experimentally viable system to study their interaction with light. In this study, we propose and analyze a WS2/PMMA/Ag planar Fabry-Perot (F-P) cavity, enabling the direct experimental measurement of WS2 absorbance. By optimizing the structure, the absorbance of A exciton of WS2 up to 0.546 can be experimentally achieved, which matches well with the theoretical calculations. Through temperature and thermal expansion strain induced by temperature, the absorbance of the A exciton can be tuned in situ. Furthermore, temperature-dependent photocurrent measurements confirmed the consistent absorbance of the A exciton under varying temperatures. This WS2/PMMA/Ag planar structure provides a straightforward and practical platform for investigating light interaction in TMDCs, laying a solid foundation for future developments of TMDC-based optoelectronic devices.

11.
Pharmacol Res ; 205: 107244, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821149

RESUMEN

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.


Asunto(s)
Antibióticos Antineoplásicos , Doxorrubicina , Vesículas Extracelulares , Molécula 1 de Adhesión Intercelular , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Animales , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Adhesión Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ratones Desnudos , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Org Chem ; 89(11): 8011-8022, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38806442

RESUMEN

We successfully developed an enantioselective trifluoromethylthiolation of structurally diverse carbonyl compounds. Trichloroisocyanuric acid and AgSCF3 were employed to generate active electrophilic trifluoromethylthio species in situ for asymmetric C-SCF3 bond formation. A broad variety of chiral SCF3-carbon nucleophiles (pyrazolones, ß-keto esters, and ß-keto amides) were obtained in excellent yields with high enantioselectivities (up to 92% ee) by Cinchona alkaloid derived squaramide catalysts. The reaction exhibits high efficiency, good enantioselectivity, and high functional group tolerance, which provided a novel and efficient way for asymmetric synthesis of trifluoromethylthiolated carbonyl compounds.

13.
Nanotechnology ; 35(36)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861963

RESUMEN

Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3 × 1010cmHz1/2W-1at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 µs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.

14.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38509821

RESUMEN

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Asunto(s)
Compuestos de Amonio , Incrustaciones Biológicas , Porcinos , Animales , Amoníaco/análisis , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Reciclaje
15.
Acta Pharmacol Sin ; 45(7): 1477-1491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538716

RESUMEN

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina , Diabetes Mellitus Experimental , Transducción de Señal , Cicatrización de Heridas , Quinasas Asociadas a rho , Animales , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos , Humanos , Diabetes Mellitus Experimental/metabolismo , Masculino , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Femenino
16.
J Clin Periodontol ; 51(3): 299-308, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38037239

RESUMEN

AIM: To explore the epidemiology of plaque-induced gingivitis and related factors among Chinese adolescents. MATERIALS AND METHODS: This cross-sectional survey comprised 118,601 schoolchildren in the 12-15-year age group. Data came from the National Oral Health Survey in mainland China. The field investigation was conducted according to the World Health Organization guidelines. The new 2018 case definition for plaque-induced gingivitis was used. Participants underwent clinical examinations and completed a structured questionnaire. Bleeding on probing (BOP) was performed on all teeth. Multinomial logistic regression was used to explore the factors related to the extent of gingivitis. RESULTS: Nearly half of the study population (47.3%) had plaque-induced gingivitis; 23.9% and 23.3% presented with localised and generalised gingivitis, respectively. The first molars were the most affected by BOP. Well-established factors, such as demographic characteristics, socioeconomic status, local factors and smoking habits, were significantly associated with the extent of gingivitis. Odds ratios for localised and generalised gingivitis increased with the decrease in frequency of toothbrushing with a fluoride dentifrice. CONCLUSIONS: The study population had high plaque-induced gingivitis prevalence. The extent of gingivitis appeared to have a dose-response relationship with the frequency of toothbrushing with a fluoride dentifrice.


Asunto(s)
Placa Dental , Dentífricos , Gingivitis , Adolescente , Humanos , Niño , Fluoruros , Estudios Transversales , Placa Dental/epidemiología , Cepillado Dental , Gingivitis/epidemiología , Índice de Placa Dental
17.
BMC Vet Res ; 20(1): 157, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664826

RESUMEN

BACKGROUND: Bactrian camel is one of the important economic animals in northwest China. They live in arid desert, and their gestation period is about 13 months, which is longer than other ruminants (such as cattle and sheep). The harsh living conditions have made its unique histological characteristics a research focus. Aggregated lymphoid nodules area (ALNA) in the abomasum of Bactrian camels, as one of the most important sites for the induction of the immune response, provide a comprehensive and effective protective role for the organism, and their lack of information will affect the feeding management, reproduction and epidemic prevention of Bactrian camels. In this study, the histological characteristics of the fetal ALNA in the abomasum of Bactrian camels at different developmental gestation have been described by using light microscopy and histology . RESULTS: The ALNA in the abomasum of the Chinese Alashan Bactrian camel is a special immune structure that was first discovered and reported by Wen-hui Wang. To further establish the developmental characteristics of this special structure in the embryonic stage, the abomasum ALNA of 8 fetuses of Alashan Bactrian camels with different gestational ages (5~13 months) were observed and studied by anatomy and histology. The results showed that the aggregation of reticular epithelial cells (RECs) surrounded by a very small number of lymphoid cells was detected for the first time in the abomasum of fetal camel at 5 months gestation, which was presumed to be primitive ALNA. At 7 months gestation, the reticular mucosal folds region (RMFR) appeared, but the longitudinal mucosal folds region (LMFR) was not significant, and histological observations showed that there were diffusely distributed lymphocytes around the RECs. At 10months gestation, RMFR and LMFR were clearly visible, lymphoid follicles appeared in histological observation, lymphocytes proliferated vigorously. By 13 months, the volume of lymphoid follicles increased, forming the subepithelial dome (SED), and there was a primitive interfollicular area between the lymphoid follicles, which contained high endothelial vein (HEV), but no germinal center (GC) was found. In summary, ALNA of Bactrian camels is not fully mature before birth. CONCLUSIONS: Generally, the small intestine PPs of ruminants (such as cattle and sheep) is already mature before birth, while the ALNA in the abomasum of Bactrian camels is not yet mature in the fetal period. During the development of ALNA in Bactrian camel, the development of lymphoid follicles extends from submucosa to Lamina propria. Interestingly, the deformation of FAE changes with age from simple columnar epithelium at the beginning of pregnancy to Simple cuboidal epithelium, which is opposite to the FAE deformation characteristics of PPs in the small intestine of fetal cattle and sheep. These results are the basis of further research on the specificity of ALNA in the abomasum of Bactrian camels.


Asunto(s)
Abomaso , Camelus , Animales , Camelus/anatomía & histología , Camelus/embriología , Femenino , Tejido Linfoide/anatomía & histología , Tejido Linfoide/crecimiento & desarrollo , Feto , Embarazo
18.
BMC Vet Res ; 20(1): 283, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956647

RESUMEN

BACKGROUND: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS: To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS: These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.


Asunto(s)
Intestino Delgado , Enfermedades de las Ovejas , Proteína 25 Asociada a Sinaptosomas , Animales , Ovinos , Enfermedades de las Ovejas/metabolismo , Enfermedades de las Ovejas/parasitología , Intestino Delgado/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Sistema Nervioso Entérico/metabolismo , Conejos
19.
Altern Ther Health Med ; 30(1): 179-185, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773672

RESUMEN

Background: Activated fibroblasts are reported partly of endothelial origin, derived through endothelial-mesenchymal transition (EndMT). Few studies have investigated EndMT in atrial fibrillation (AF), which may have a potential effect on cardiac fibrosis. Objective: To investigate whether EndMT occurs in an animal model of AF. Methods: A total of 80 Sprague‒Dawley rats (8 weeks, male, 200-250 g) were randomly divided into two groups: the control group and the AF group (n = 40 in each group). Rats in the AF group received a daily intravenous injection of acetylcholine-calcium chloride for seven days to establish an AF model, and rats in the control rats were injected with saline in the same way. At different time points (Day 3, Day 5, Day 7, Day 9, Day 11, Day 13, Day 15, and Day 17), we observed changes in EndMT-related indexes (CD31, VE-cadherin, FSP-1, TGF-ß1 and collagen) and HIF-1α in the rat atria of two groups, as well as immunofluorescence co-expression of CD31/FSP-1 and VE-cadherin/FSP-1 in the endocardial endocardium of the atria. Results: In the AF group, atrial EndMT was observed and enhanced with time. Compared with the control group, the levels of CD31 and VE-cadherin in the AF group decreased, while mesenchymal marker (FSP-1) and EndMT inducer (TGF-ß1) were dynamically increased after Day 3. The co-expression of CD31/FSP-1 and VE-cadherin/FSP-1 was observed from Day 3 to the end of observation time Day 17 by immunofluorescence in AF rat hearts, indicating the existence of EndMT. In addition, the level of HIF-1α in the hearts of AF rats was increased. Conclusion: As far as we know, this is the first study to explore the dynamic process of EndMT in an AF rat model. The presence of EndMT was verified in the atria of the AF rat model, and Day 7-Day 17 was the best observation time point for the model. This may lead to a better understanding of the pathological changes and mechanisms in AF with a short modeling cycle.


Asunto(s)
Fibrilación Atrial , Factor de Crecimiento Transformador beta1 , Ratas , Masculino , Animales , Factor de Crecimiento Transformador beta1/farmacología , Transición Endotelial-Mesenquimatosa , Transición Epitelial-Mesenquimal , Ratas Sprague-Dawley
20.
J Am Soc Nephrol ; 34(6): 1019-1038, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36890646

RESUMEN

SIGNIFICANCE STATEMENT: Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND: Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS: We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS: A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS: The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .


Asunto(s)
Proteínas Inmediatas-Precoces , Potasio , Ratones , Animales , Fosforilación , Potasio/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Potasio en la Dieta , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Riñón/metabolismo , Proteínas Portadoras/metabolismo , Ratones Noqueados , Transporte Iónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA