Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831375

RESUMEN

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
2.
Genome Res ; 34(4): 633-641, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38589250

RESUMEN

Accurate detection of somatic mutations in DNA sequencing data is a fundamental prerequisite for cancer research. Previous analytical challenges were overcome by consensus mutation calling from four to five popular callers. This, however, increases the already nontrivial computing time from individual callers. Here, we launch MuSE 2, powered by multistep parallelization and efficient memory allocation, to resolve the computing time bottleneck. MuSE 2 speeds up 50 times more than MuSE 1 and eight to 80 times more than other popular callers. Our benchmark study suggests combining MuSE 2 and the recently accelerated Strelka2 achieves high efficiency and accuracy in analyzing large cancer genomic data sets.


Asunto(s)
Secuenciación del Exoma , Mutación , Neoplasias , Secuenciación Completa del Genoma , Humanos , Neoplasias/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos , Programas Informáticos , Genoma Humano , Genómica/métodos , Algoritmos , Análisis Mutacional de ADN/métodos
3.
Nature ; 578(7793): 122-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025013

RESUMEN

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Asunto(s)
Evolución Molecular , Genoma Humano/genética , Neoplasias/genética , Reparación del ADN/genética , Dosificación de Gen , Genes Supresores de Tumor , Variación Genética , Humanos , Mutagénesis Insercional/genética
4.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993417

RESUMEN

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Asunto(s)
Fase G1 , Neoplasias , Factores de Transcripción , Humanos , Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Elementos de Facilitación Genéticos
5.
Plant J ; 114(2): 403-423, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36786716

RESUMEN

In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.


Asunto(s)
Ataxia Telangiectasia , Roturas del ADN de Doble Cadena , Temperatura , Reparación del ADN/genética , Inestabilidad Genómica , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
6.
Plant Biotechnol J ; 22(7): 1848-1866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38391124

RESUMEN

Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Luz , Hojas de la Planta , Plantones , Arachis/genética , Arachis/metabolismo , Arachis/crecimiento & desarrollo , Arachis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Expresión Génica de una Sola Célula
7.
Anal Biochem ; 691: 115556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705226

RESUMEN

we developed an effective protein precipitation method for determination of levamlodipine in human plasma using LC-MS/MS. Sample extraction was carried out by using liquid-liquid extraction in 96-well plate format. (S)-Amlodipine-d4 was used as internal standard (IS). The chromatographic separation was achieved using Philomen Chiral MX (2) column (3 µm, 2.1 × 100 mm). Mobile phase A was comprised of Acetonitrile (ACN), Mono ethanol amine (MEA) and Iso-Propyl alcohol (IPA) (1000:1:10, v/v/v), Mobile phase B was IPA-ACN (2:1, v/v). The flow rate was 0.4 mL/min. The total run time of each sample was 4.0 min with gradient elution. LC-MS/MS spectra were generated in positive ion mode, and multiple reaction monitoring (MRM) was used to detect the following transitions: m/z 409.20 â†’ 238.15 for levamlodipine and 415.25 â†’ 240.20 for (S)-Amlodipine-d4 (the IS). The method was linear from 50 to 10000 pg/mL(R2=0.9988489),and the lower limit of quantification (LLOQ) was 50 pg/mL. This method was applied to a bioequivalence study of levamlodipine.


Asunto(s)
Niacina/análogos & derivados , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Dihidropiridinas/sangre , Dihidropiridinas/farmacocinética , Dihidropiridinas/química , Extracción Líquido-Líquido , Límite de Detección , Amlodipino/sangre , Amlodipino/farmacocinética , Cromatografía Líquida con Espectrometría de Masas
8.
Epilepsia ; 65(5): 1475-1487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470097

RESUMEN

OBJECTIVE: We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS: Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS: As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE: These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Factor 88 de Diferenciación Mieloide , Convulsiones , Transducción de Señal , Animales , Masculino , Ratones , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Proteínas de Unión al Calcio/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Electroencefalografía , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Convulsiones/metabolismo , Convulsiones/inmunología , Transducción de Señal/fisiología
10.
Altern Ther Health Med ; 30(1): 226-231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773681

RESUMEN

Objective: To assess the reliability of quantitative ultrasound (QUS) in diagnosing and screening osteoporosis in elder women. Methods: We conducted a systematic search of the online databases, including PubMed, Embase, Web of Science, and China National Knowledge, and screened the studies according to the inclusion criteria. We directly extract or calculate the value of true positive (TP), false positive (FP), false negative (FN), and true negative (TN) from eligible studies. We sought to evaluate the diagnostic parameters of QUS, containing the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC). Results: Twelve studies were included in this study with a total of 2260 women. QUS showed a pooled diagnostic odds ratio of 5.07 (95% CI 3.28-7.84), sensitivity of 0.69 (95% CI 0.65-0.72), specificity of 0.67 (95% CI 0.64-0.69), and an AUC of 0.7523 (Q*=0.6953). There was no obvious heterogeneity and threshold effect according to the Spearman correlation coefficient (P = 0.059). No significant publication bias was found through the Deek's funnel. Conclusion: Our study suggested that the diagnostic value of QUS for osteoporosis in elder women was acceptable, but the accuracy still needed to be improved, QUS can be recommended as a pre-screening tool for osteoporosis to determine whether DXA measurement was needed.


Asunto(s)
Osteoporosis , Humanos , Femenino , Anciano , Curva ROC , Reproducibilidad de los Resultados , Ultrasonografía , Osteoporosis/diagnóstico por imagen , China
11.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38676209

RESUMEN

Detecting gear rim fatigue cracks using vibration signal analysis is often a challenging task, which typically requires a series of signal processing steps to detect and enhance fault features. This task becomes even harder in helicopter planetary gearboxes due to the complex interactions between different gear sets and the presence of vibration from sources other than the planetary gear set. In this paper, we propose an effectual processing algorithm to isolate and enhance rim crack features and to trend crack growth in planet gears. The algorithm is based on using cepstrum editing (or liftering) of the hunting-tooth synchronous averaged signals (angular domain) to extract harmonics and sidebands of the planet gears and low-pass filtering and minimum entropy deconvolution (MED) to enhance extracted fault features. The algorithm has been successfully applied to a vibration dataset collected from a planet gear rim crack propagation test undertaken in the Helicopter Transmission Test Facility (HTTF) at DSTG Melbourne. In this test, a seeded notch generated by an electric discharge machine (EDM) was used to initiate a fatigue crack that propagated through the gear rim body over 94 load cycles. The proposed algorithm demonstrated a successful isolation of incipient fault features and provided a reliable trending capability to monitor crack progression. Results of a comparative analysis showed that the proposed algorithm outperformed the traditional signal processing approach.

12.
Angew Chem Int Ed Engl ; : e202403023, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763905

RESUMEN

The efficient electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for H2O2 electrosynthesis at near-zero overpotential with approximately 95 % selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional H2O2 yield of 15.77 mol gcatalyst -1 h-1, generating a neutral H2O2 solution with an accumulated concentration of 6.43 wt %, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O2 enrichment and localized pH elevation, establishing a favorable microenvironment for 2e- ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e- process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e- ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.

13.
Mol Med ; 29(1): 154, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936054

RESUMEN

BACKGROUND: Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS: Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS: We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION: In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Ratones , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Asma/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo , Inflamación/metabolismo , Moco/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ovalbúmina
14.
Genome Res ; 30(8): 1170-1180, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817165

RESUMEN

De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Síndrome de Li-Fraumeni/genética , Neoplasias Ováricas/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Familia , Femenino , Humanos , Linaje , Proteína p53 Supresora de Tumor/genética , Adulto Joven
15.
Nat Methods ; 17(4): 414-421, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203388

RESUMEN

Bulk and single-cell DNA sequencing has enabled reconstructing clonal substructures of somatic tissues from frequency and cooccurrence patterns of somatic variants. However, approaches to characterize phenotypic variations between clones are not established. Here we present cardelino (https://github.com/single-cell-genetics/cardelino), a computational method for inferring the clonal tree configuration and the clone of origin of individual cells assayed using single-cell RNA-seq (scRNA-seq). Cardelino flexibly integrates information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. We apply cardelino to a published cancer dataset and to newly generated matched scRNA-seq and exome-seq data from 32 human dermal fibroblast lines, identifying hundreds of differentially expressed genes between cells from different somatic clones. These genes are frequently enriched for cell cycle and proliferation pathways, indicating a role for cell division genes in somatic evolution in healthy skin.


Asunto(s)
Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Algoritmos , Ciclo Celular , Proliferación Celular , Humanos , Melanoma , Mutación , Transcriptoma
16.
Int Arch Allergy Immunol ; 184(2): 122-131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36323228

RESUMEN

INTRODUCTION: We investigated the molecular mechanism by which B lymphocytes regulate Th1/Th2 imbalance to participate in the pulmonary fibrosis in hypersensitivity pneumonia induced by pigeon shedding in rats. METHODS: CD19+ rats and CD19- rats were used to construct animal models of fibrotic hypersensitivity pneumonia. DAPT was used to inhibit the Notch signaling pathway. The pathological changes were assessed with HE and Masson staining. Protein level was detected with Western blot. Th1/Th2 ratio was analyzed with flow cytometry. Cytokine levels were measured with ELISA. RESULTS: The pathological changes of pulmonary fibrosis were not obvious in the CD19- rats and after DAPT treatment. Notch signaling pathway proteins, including Notch1, Notch2, Jag1, Jag2, DLL1, and DLL4, in lung tissues of model rats were all significantly upregulated than those in control rats. However, these proteins in CD19- rats were lower in CD19+ rats, suggesting that B cells play a key role in inducing pneumonia. Besides, the Th1/Th2 ratio in the BALF of model rats decreased, which was further reversed by DAPT. However, we found that in CD19- rats, the regulation of the Th1/Th2 ratio by the Notch signaling pathway was lost. CONCLUSION: Deleting B lymphocytes or blocking the Notch pathway both reversed the Th1/Th2 imbalance in fibrotic hypersensitivity pneumonia and inhibited pulmonary fibrosis.


Asunto(s)
Hipersensibilidad , Neumonía , Fibrosis Pulmonar , Ratas , Animales , Células Th2/metabolismo , Columbidae , Inhibidores de Agregación Plaquetaria/metabolismo , Hipersensibilidad/metabolismo , Células TH1/metabolismo , Balance Th1 - Th2 , Proteína Jagged-2
17.
Langmuir ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630661

RESUMEN

Catalytic combustion is an important means to reduce toluene pollution, and improving the performance of catalytic combustion catalysts is of great significance for practical applications. The study of oxygen vacancies is one of the key steps to improve catalyst performance. Here, two different oxygen vacancy structures were well-defined and controllably synthesized by flame spray pyrolysis (FSP) to evaluate their effect on the catalytic combustion performance of toluene. The closely contacted oxygen vacancies (c-Vo) enhance the oxygen activation capacity of the catalyst, and the temperature of the first oxygen desorption peak and hydrogen reduction peak is 56 and 37 °C lower than the separated oxygen vacancy (s-Vo) sample, respectively. The oxygen activation energy barrier on the c-Vo is calculated to be negligible of only 0.04 eV. Both in situ DRIFT and DFT calculations indicate that the c-Vo structure accelerates the catalytic oxidation of p-toluene molecules. Moreover, due to the unique characteristics of high-temperature synthesis and rapid quenching, FSP brings excellent water resistance and high-temperature stability to the catalyst. In conclusion, utilizing the FSP in situ reduction strategy can create more c-Vo to improve the catalytic combustion performance of toluene.

18.
Pharmacol Res ; 193: 106811, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268178

RESUMEN

PHARMACOM-EPI is a novel framework to predict plasma concentrations of drugs at the time of occurrence of clinical outcomes. In early 2021, the U.S. Food and Drug Administration (FDA) issued a warning on the antiseizure drug lamotrigine claiming that it has the potential to increase the risk of arrhythmias and related sudden cardiac death due to a pharmacological sodium channel-blocking effect. We hypothesized that the risk of arrhythmias and related death is due to toxicity. We used the PHARMACOM-EPI framework to investigate the relationship between lamotrigine's plasma concentrations and the risk of death in older patients using real-world data. Danish nationwide administrative and healthcare registers were used as data sources and individuals aged 65 years or older during the period 1996 - 2018 were included in the study. According to the PHARMACOM-EPI framework, plasma concentrations of lamotrigine were predicted at the time of death and patients were categorized into non-toxic and toxic groups based on the therapeutic range of lamotrigine (3-15 mg/L). Over 1 year of treatment, the incidence rate ratio (IRR) of all-cause mortality was calculated between the propensities score matched toxic and non-toxic groups. In total, 7286 individuals were diagnosed with epilepsy and were exposed to lamotrigine, 432 of which had at least one plasma concentration measurement The pharmacometric model by Chavez et al. was used to predict lamotrigine's plasma concentrations considering the lowest absolute percentage error among identified models (14.25 %, 95 % CI: 11.68-16.23). The majority of lamotrigine associated deaths were cardiovascular-related and occurred among individuals with plasma concentrations in the toxic range. The IRR of mortality between the toxic group and non-toxic group was 3.37 [95 % CI: 1.44-8.32] and the cumulative incidence of all-cause mortality exponentially increased in the toxic range. Application of our novel framework PHARMACOM-EPI provided strong evidence to support our hypothesis that the increased risk of all-cause and cardiovascular death was associated with a toxic plasma concentration level of lamotrigine among older lamotrigine users.


Asunto(s)
Anticonvulsivantes , Triazinas , Estados Unidos , Humanos , Anciano , Lamotrigina/efectos adversos , United States Food and Drug Administration , Triazinas/efectos adversos , Anticonvulsivantes/uso terapéutico , Atención a la Salud , Dinamarca/epidemiología
19.
Metab Brain Dis ; 38(4): 1249-1259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662413

RESUMEN

Vagus nerve stimulation through the action of acetylcholine can modulate inflammatory responses and metabolism. α7 Nicotinic Acetylcholine Receptor (α7nAChR) is a key component in the biological functions of acetylcholine. To further explore the health benefits of vagus nerve stimulation, this study aimed to investigate whether α7nAChR agonists offer beneficial effects against poststroke inflammatory and metabolic changes and to identify the underlying mechanisms in a rat model of stroke established by permanent cerebral ischemia. We found evidence showing that pretreatment with α7nAChR agonist, GTS-21, improved poststroke brain infarction size, impaired motor coordination, brain apoptotic caspase 3 activation, dysregulated glucose metabolism, and glutathione reduction. In ischemic cortical tissues and gastrocnemius muscles with GTS-21 pretreatment, macrophages/microglia M1 polarization-associated Tumor Necrosis Factor-α (TNF-α) mRNA, Cluster of Differentiation 68 (CD68) protein, and Inducible Nitric Oxide Synthase (iNOS) protein expression were reduced, while expression of anti-inflammatory cytokine IL-4 mRNA, and levels of M2 polarization-associated CD163 mRNA and protein were increased. In the gastrocnemius muscles, stroke rats showed a reduction in both glutathione content and Akt Serine 473 phosphorylation, as well as an elevation in Insulin Receptor Substrate-1 Serine 307 phosphorylation and Dynamin-Related Protein 1 Serine 616 phosphorylation. GTS-21 reversed poststroke changes in the gastrocnemius muscles. Overall, our findings, provide further evidence supporting the neuroprotective benefits of α7nAChR agonists, and indicate that they may potentially exert anti-inflammatory and metabolic effects peripherally in the skeletal muscle in an acute ischemic stroke animal model.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina , Glucosa
20.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445978

RESUMEN

Autophagy has stabilizing functions for cardiomyocytes. Recent studies indicate that an impairment in the autophagy pathway can seriously affect morphology and function, potentially leading to heart failure. However, the role and the underlying mechanism of the endosomal sorting complex required for transport (ESCRT) family protein, in particular the AAA-ATPase vacuolar protein sorting 4a (Vps4a), in regulating myocardial autophagy remains unclear. In the present study, cardiomyocyte-specific Vps4a knockout mice were generated by crossing Vps4aflox/flox (Vps4afl/fl) with Myh6-cre transgenic mice. As a result, we observed a partially dilated left ventricular (LV) chamber, a significant increase in heart weight to body weight ratio (HW/BW), and heart weight to tibial length ratio (HW/TL), hypertrophic cardiomyopathy and early lethality starting at 3 months of age. Hematoxylin-eosin (HE), immunofluorescence assay (IFA), and Western blot (WB) revealed autophagosome accumulation in cardiomyocytes. A transcriptome-based analysis and autophagic flux tracking by AAV-RFP-GFP-LC3 showed that the autophagic flux was blocked in Vps4a knockout cardiomyocytes. In addition, we provided in vitro evidence demonstrating that Vps4a and LC3 were partially co-localized in cardiomyocytes, and the knockdown of Vps4a led to the accumulation of autophagosomes in cardiomyocytes. Similarly, the transfection of cardiomyocytes with adenovirus (Adv) mCherry-GFP-LC3 further indicated that the autophagic flux was blocked in cells with deficient levels of Vps4a. Finally, an electron microscope (EM) showed that the compromised sealing of autophagosome blocked the autophagic flux in Vps4a-depleted cardiomyocytes. These findings revealed that Vps4a contributed to the sealing of autophagosomes in cardiomyocytes. Therefore, we demonstrated that Vps4a deletion could block the autophagic flux, leading to the accumulation of degradation substances and compromised cardiac function. Overall, this study provides insights into a new theoretical basis for which autophagy may represent a therapeutic target for cardiovascular diseases.


Asunto(s)
Autofagia , Cardiomiopatía Hipertrófica , Ratones , Animales , Autofagia/genética , Miocardio/metabolismo , Autofagosomas/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Transgénicos , Cardiomiopatía Hipertrófica/metabolismo , Ratones Noqueados , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA