Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(9): 1623-1636, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39107403

RESUMEN

Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.


Asunto(s)
Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias/inmunología , Línea Celular Tumoral , Células Th17/inmunología , Inmunoterapia/métodos , Proteínas con Dominio LIM/metabolismo , Adenosina Trifosfatasas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Femenino
2.
Nature ; 633(8030): 575-581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232169

RESUMEN

Futuristic technologies such as morphing aircrafts and super-strong artificial muscles depend on metal alloys being as strong as ultrahigh-strength steel yet as flexible as a polymer1-3. However, achieving such 'strong yet flexible' alloys has proven challenging4-9 because of the inevitable trade-off between strength and flexibility5,8,10. Here we report a Ti-50.8 at.% Ni strain glass alloy showing a combination of ultrahigh yield strength of σy ≈ 1.8 GPa and polymer-like ultralow elastic modulus of E ≈ 10.5 GPa, together with super-large rubber-like elastic strain of approximately 8%. As a result, it possesses a high flexibility figure of merit of σy/E ≈ 0.17 compared with existing structural materials. In addition, it can maintain such properties over a wide temperature range of -80 °C to +80 °C and demonstrates excellent fatigue resistance at high strain. The alloy was fabricated by a simple three-step thermomechanical treatment that is scalable to industrial lines, which leads not only to ultrahigh strength because of deformation strengthening, but also to ultralow modulus by the formation of a unique 'dual-seed strain glass' microstructure, composed of a strain glass matrix embedded with a small number of aligned R and B19' martensite 'seeds'. In situ X-ray diffractometry shows that the polymer-like deformation behaviour of the alloy originates from a nucleation-free reversible transition between strain glass and R and B19' martensite during loading and unloading. This exotic alloy with the potential for mass producibility may open a new horizon for many futuristic technologies, such as morphing aerospace vehicles, superman-type artificial muscles and artificial organs.

3.
N Engl J Med ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39282897

RESUMEN

BACKGROUND: Previous results from this trial showed longer overall survival after treatment with nivolumab plus ipilimumab or with nivolumab monotherapy than with ipilimumab monotherapy in patients with advanced melanoma. Given that patients with advanced melanoma are living longer than 7.5 years, longer-term data were needed to address new clinically relevant questions. METHODS: We randomly assigned patients with previously untreated advanced melanoma, in a 1:1:1 ratio, to one of the following regimens: nivolumab (1 mg per kilogram of body weight) plus ipilimumab (3 mg per kilogram) every 3 weeks for four doses, followed by nivolumab (3 mg per kilogram) every 2 weeks; nivolumab (3 mg per kilogram) every 2 weeks plus placebo; or ipilimumab (3 mg per kilogram) every 3 weeks for four doses plus placebo. Treatment was continued until the occurrence of disease progression, unacceptable toxic effects, or withdrawal of consent. Randomization was stratified according to BRAF mutation status, metastasis stage, and programmed death ligand 1 expression. Here, we report the final, 10-year results of this trial, including results for overall survival and melanoma-specific survival, as well as durability of response. RESULTS: With a minimum follow-up of 10 years, median overall survival was 71.9 months with nivolumab plus ipilimumab, 36.9 months with nivolumab, and 19.9 months with ipilimumab. The hazard ratio for death was 0.53 (95% confidence interval [CI], 0.44 to 0.65) for nivolumab plus ipilimumab as compared with ipilimumab and was 0.63 (95% CI, 0.52 to 0.76) for nivolumab as compared with ipilimumab. Median melanoma-specific survival was more than 120 months with nivolumab plus ipilimumab (not reached, with 37% of the patients alive at the end of the trial), 49.4 months with nivolumab, and 21.9 months with ipilimumab. Among patients who had been alive and progression-free at 3 years, 10-year melanoma-specific survival was 96% with nivolumab plus ipilimumab, 97% with nivolumab, and 88% with ipilimumab. CONCLUSIONS: The final trial results showed a continued, ongoing survival benefit with nivolumab plus ipilimumab and with nivolumab monotherapy, as compared with ipilimumab monotherapy, in patients with advanced melanoma. (Funded by Bristol Myers Squibb and others; CheckMate 067 ClinicalTrials.gov number, NCT01844505.).

4.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642822

RESUMEN

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Asunto(s)
Inflamación/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Masculino , Ratones , Persona de Mediana Edad , Sepsis/sangre , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo
5.
J Biol Chem ; 300(6): 107311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657866

RESUMEN

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.


Asunto(s)
Disulfiram , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Disulfiram/farmacología , Línea Celular Tumoral , Animales , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética
6.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305405

RESUMEN

MOTIVATION: Effective drug delivery systems are paramount in enhancing pharmaceutical outcomes, particularly through the use of cell-penetrating peptides (CPPs). These peptides are gaining prominence due to their ability to penetrate eukaryotic cells efficiently without inflicting significant damage to the cellular membrane, thereby ensuring optimal drug delivery. However, the identification and characterization of CPPs remain a challenge due to the laborious and time-consuming nature of conventional methods, despite advances in proteomics. Current computational models, however, are predominantly tailored for balanced datasets, an approach that falls short in real-world applications characterized by a scarcity of known positive CPP instances. RESULTS: To navigate this shortfall, we introduce PractiCPP, a novel deep-learning framework tailored for CPP prediction in highly imbalanced data scenarios. Uniquely designed with the integration of hard negative sampling and a sophisticated feature extraction and prediction module, PractiCPP facilitates an intricate understanding and learning from imbalanced data. Our extensive computational validations highlight PractiCPP's exceptional ability to outperform existing state-of-the-art methods, demonstrating remarkable accuracy, even in datasets with an extreme positive-to-negative ratio of 1:1000. Furthermore, through methodical embedding visualizations, we have established that models trained on balanced datasets are not conducive to practical, large-scale CPP identification, as they do not accurately reflect real-world complexities. In summary, PractiCPP potentially offers new perspectives in CPP prediction methodologies. Its design and validation, informed by real-world dataset constraints, suggest its utility as a valuable tool in supporting the acceleration of drug delivery advancements. AVAILABILITY AND IMPLEMENTATION: The source code of PractiCPP is available on Figshare at https://doi.org/10.6084/m9.figshare.25053878.v1.


Asunto(s)
Péptidos de Penetración Celular , Aprendizaje Profundo , Péptidos de Penetración Celular/química , Programas Informáticos , Células Eucariotas , Sistemas de Liberación de Medicamentos/métodos
7.
Plant Physiol ; 195(2): 1256-1276, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391271

RESUMEN

The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.


Asunto(s)
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Tricomas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Tricomas/genética , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación/genética , Fenotipo , Microtúbulos/metabolismo , Forma de la Célula/genética , Regiones Promotoras Genéticas/genética
8.
FASEB J ; 38(7): e23597, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581235

RESUMEN

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.


Asunto(s)
Proteoma , Sepsis , Ratones , Animales , Insuficiencia Multiorgánica/complicaciones , Insuficiencia Multiorgánica/patología , Hígado/metabolismo , Riñón/metabolismo , Sepsis/metabolismo , Modelos Animales de Enfermedad
9.
Carcinogenesis ; 45(1-2): 45-56, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-37971062

RESUMEN

OBJECTIVE: Gastric cancer (GC) is prevalent worldwide but has a dismal prognosis, and its molecular and pathogenic pathways remain unknown. Kallikrein 11 (KLK11) has a reduced expression in GC and may be a promising biomarker. METHOD: Herein, the function of KLK11 in GC and its regulatory mechanism was studied. Gene sequencing and quantitative reverse transcription-polymerase chain reaction were used to determine the expression of KLK11 in GC and precancerous lesions. Cell function tests and flow cytometry were conducted to determine the proliferative capacity and cell cycle of GC cells, respectively. A luciferase reporter test confirmed the interaction between RNA molecules. The mTOR/4E-BP1 signaling pathway was analyzed using western blotting. RESULT: KLK11 has a suppressed expression in GC samples. KLK11 decreased the proliferative capacity of GC cells, by inhibiting the degree of mTOR/4E-BP1 phosphorylation. In contrast, miR-1304 increased GC cell proliferation by inhibiting KLK11. Moreover, KLK11 was able to limit in vivo GC cell proliferation. CONCLUSION: These findings reveal a promising strategy to prevent and treat GC by targeting the KLK11-mediated mTOR/4E-BP1 cascade.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/genética , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Plant J ; 116(5): 1248-1270, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37566437

RESUMEN

Dehydration response element binding (DREB) proteins are vital for plant abiotic stress responses, but the understanding of DREBs in bamboo, an important sustainable non-timber forest product, is limited. Here we conducted a comprehensive genome-wide analysis of the DREB gene family in Moso bamboo, representing the most important running bamboo species in Asia. In total, 44 PeDREBs were identified, and information on their gene structures, protein motifs, phylogenetic relationships, and stress-related cis-regulatory elements (CREs) was provided. Based on the bioinformatical analysis, we further analyzed PeDREBs from the A5 group and found that four of five PeDREB transcripts were induced by salt, drought, and cold stresses, and their proteins could bind to stress-related CREs. Among these, PeDREB28 was selected as a promising candidate for further functional characterization. PeDREB28 is localized in nucleus, has transcriptional activation activity, and could bind to the DRE- and coupling element 1- (CE1) CREs. Overexpression of PeDREB28 in Arabidopsis and bamboo improved plant abiotic stress tolerance. Transcriptomic analysis showed that broad changes due to the overexpression of PeDREB28. Furthermore, 628 genes that may act as the direct PeDREB28 downstream genes were identified by combining DAP-seq and RNA-seq analysis. Moreover, we confirmed that PeDREB28 could bind to the promoter of pyrabactin-resistance-like gene (DlaPYL3), which is a homolog of abscisic acid receptor in Arabidopsis, and activates its expression. In summary, our study provides important insights into the DREB gene family in Moso bamboo, and contributes to their functional verification and genetic engineering applications in the future.


Asunto(s)
Arabidopsis , Filogenia , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Elementos de Respuesta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/genética
11.
Plant J ; 116(3): 756-772, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516999

RESUMEN

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Ácidos Indolacéticos , Alelos , Diferenciación Celular , Morfogénesis/genética , Plantas Modificadas Genéticamente/genética , Mutación , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo
12.
BMC Genomics ; 25(1): 778, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127634

RESUMEN

BACKGROUND: DNA sequencing is a critical tool in modern biology. Over the last two decades, it has been revolutionized by the advent of massively parallel sequencing, leading to significant advances in the genome and transcriptome sequencing of various organisms. Nevertheless, challenges with accuracy, lack of competitive options and prohibitive costs associated with high throughput parallel short-read sequencing persist. RESULTS: Here, we conduct a comparative analysis using matched DNA and RNA short-reads assays between Element Biosciences' AVITI and Illumina's NextSeq 550 chemistries. Similar comparisons were evaluated for synthetic long-read sequencing for RNA and targeted single-cell transcripts between the AVITI and Illumina's NovaSeq 6000. For both DNA and RNA short-read applications, the study found that the AVITI produced significantly higher per sequence quality scores. For PCR-free DNA libraries, we observed an average 89.7% lower experimentally determined error rate when using the AVITI chemistry, compared to the NextSeq 550. For short-read RNA quantification, AVITI platform had an average of 32.5% lower error rate than that for NextSeq 550. With regards to synthetic long-read mRNA and targeted synthetic long read single cell mRNA sequencing, both platforms' respective chemistries performed comparably in quantification of genes and isoforms. The AVITI displayed a marginally lower error rate for long reads, with fewer chemistry-specific errors and a higher mutation detection rate. CONCLUSION: These results point to the potential of the AVITI platform as a competitive candidate in high-throughput short read sequencing analyses when juxtaposed with the Illumina NextSeq 550.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Humanos , Análisis de la Célula Individual/métodos , Biblioteca de Genes
13.
Hum Genet ; 143(3): 293-309, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456936

RESUMEN

Auditory neuropathy (AN) is a unique type of language developmental disorder, with no precise rate of genetic contribution that has been deciphered in a large cohort. In a retrospective cohort of 311 patients with AN, pathogenic and likely pathogenic variants of 23 genes were identified in 98 patients (31.5% in 311 patients), and 14 genes were mutated in two or more patients. Among subgroups of patients with AN, the prevalence of pathogenic and likely pathogenic variants was 54.4% and 56.2% in trios and families, while 22.9% in the cases with proband-only; 45.7% and 25.6% in the infant and non-infant group; and 33.7% and 0% in the bilateral and unilateral AN cases. Most of the OTOF gene (96.6%, 28/29) could only be identified in the infant group, while the AIFM1 gene could only be identified in the non-infant group; other genes such as ATP1A3 and OPA1 were identified in both infant and non-infant groups. In conclusion, genes distribution of AN, with the most common genes being OTOF and AIFM1, is totally different from other sensorineural hearing loss. The subgroups with different onset ages showed different genetic spectrums, so did bilateral and unilateral groups and sporadic and familial or trio groups.


Asunto(s)
Pérdida Auditiva Central , Mutación , Humanos , Femenino , Masculino , Pérdida Auditiva Central/genética , Lactante , Niño , Preescolar , Estudios Retrospectivos , Adolescente , Proteínas de la Membrana/genética , Estudios de Cohortes
14.
New Phytol ; 241(3): 1161-1176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964659

RESUMEN

Lignin contributes to plant mechanical properties during bending loads. Meanwhile, phytohormone auxin controls various plant biological processes. However, the mechanism of auxin's role in bending-induced lignin biosynthesis was unclear, especially in bamboo, celebrated for its excellent deformation stability. Here, we reported that auxin response factors (ARF) 3 and ARF6 from Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) directly regulate lignin biosynthesis pathway genes, and affect lignin biosynthesis in bamboo. Auxin and lignin exhibited asymmetric distribution patterns, and auxin promoted lignin biosynthesis in response to bending loads in bamboo. Employing transcriptomic and weighted gene co-expression network analysis approach, we discovered that expression patterns of ARF3 and ARF6 strongly correlated with lignin biosynthesis genes. ARF3 and ARF6 directly bind to the promoter regions of 4-coumarate: coenzyme A ligase (4CL3, 4CL7, and 4CL9) or caffeoyl-CoA O-methyltransferase (CCoAOMT2) genes, pivotal to lignin biosynthesis, and activate their expressions. Notably, the efficacy of this binding hinges on auxin levels. Alternation of the expressions of ARF3 and ARF6 substantially altered lignin accumulation in transgenic bamboo. Collectively, our study shed light on bamboo lignification genetics. Auxin signaling could directly modulate lignin biosynthesis genes to impact plant lignin content.


Asunto(s)
Ácidos Indolacéticos , Lignina , Ácidos Indolacéticos/metabolismo , Lignina/metabolismo , Poaceae/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
15.
Subst Use Misuse ; 59(10): 1455-1463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789408

RESUMEN

BACKGROUND: Craving is a core feature of addiction. Rumination and depression play a crucial role in the process of methamphetamine addiction. The aim of this study was to examine the relationship between rumination, depression and craving in methamphetamine patients, which has not been explored yet. METHODS: A total of 778 patients with methamphetamine user disorder (MUD) at the Xinhua Drug Rehabilitation Center, located in Mianyang City, Sichuan Province, China. We used a set of self-administered questionnaires that included socio-demographic, detailed drug use history, rumination, depression and craving information. The Rumination Response Scale (RRS) was used to measure rumination, the Beck Depression Inventory (BDI) to measure depression and the Visual Analogue Scale (VAS) to measure craving. RESULTS: There was a significant positive correlation between rumination and craving, or depression, and between depression and craving. Furthermore, depression mediated between rumination and craving, with a mediation effect of 160%. CONCLUSIONS: Our findings suggest that there is a close interrelationship between rumination, craving and depression in MUD patients, and that depression may play a mediating role between rumination and craving.


This is the first study to investigate the relationship between rumination and craving during withdrawal in methamphetamine dependent patients and the mediating role of depression.Among methamphetamine patients, it was found that reflection was positively correlated with rumination and depression, depression and craving, rumination and craving, and depression plays the mediating role between rumination and craving.These findings suggest that interventions to reduce depression and rumination may also be effective for withdrawal and relapse reduction in methamphetamine patients, providing further rationale for the treatment of methamphetamine patients.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Ansia , Depresión , Metanfetamina , Rumiación Cognitiva , Humanos , Masculino , Adulto , Femenino , Trastornos Relacionados con Anfetaminas/psicología , Depresión/psicología , China , Adulto Joven , Persona de Mediana Edad , Encuestas y Cuestionarios , Pueblos del Este de Asia
16.
Bioprocess Biosyst Eng ; 47(10): 1659-1668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969832

RESUMEN

Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.


Asunto(s)
Eritritol , Yarrowia , Eritritol/biosíntesis , Eritritol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Yarrowia/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/biosíntesis , Ingeniería de Proteínas/métodos , Ingeniería Metabólica/métodos , Simulación del Acoplamiento Molecular
17.
Zhonghua Nan Ke Xue ; 30(6): 514-518, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39212360

RESUMEN

OBJECTIVE: To compare thulium laser enucleation of the prostate (ThuLEP) with plasma kinetic resection of the prostate (PKRP) in the treatment of BPH. METHODS: We retrospectively analyzed the medical records of 160 cases of BPH treated by ThuLEP (the observation group, n = 80) or PKRP (the control group, n = 80) in our hospital from January 2021 to December 2023. We recorded the operation time, bladder irrigation time, catheter retention time, hospitalization time, postoperative complications, and pre- and postoperative maximum urinary flow rate (Qmax), residual urine volume (PVR), prostate-specific antigen (PSA) and prostate volume, followed by comparison of the data obtained between the two groups of patients. RESULTS: Compared with the controls, the patients of the observation group showed significantly shorter operation time (ï¼»67.25 ± 7.24ï¼½ vs ï¼»60.10 ± 5.15ï¼½ min, P< 0.05), bladder irrigation time (ï¼»46.90 ± 10.77ï¼½ vs ï¼»43.24 ± 6.65ï¼½ h, P< 0.05), catheterization time (ï¼»5.60 ± 1.31ï¼½ vs ï¼»5.03 ± 1.24ï¼½ d, P< 0.05) and hospitalization time (ï¼»7.31 ± 2.00ï¼½ vs ï¼»6.55 ± 1.67ï¼½ d, P< 0.05), higher Qmax (ï¼»18.50 ± 1.24ï¼½ vs ï¼»20.68 ± 1.45ï¼½ ml/s, P< 0.05), lower PVR (ï¼»12.10 ± 3.53ï¼½ vs ï¼»10.82 ± 3.10ï¼½ ml, P< 0.05), PSA (ï¼»4.60 ± 0.78ï¼½ vs ï¼»3.38 ± 0.40ï¼½ µg/L, P< 0.05) and prostate volume (ï¼»25.35 ± 6.46ï¼½ vs ï¼»20.12 ± 5.13ï¼½ ml, P< 0.05) at 3 months after surgery, but no statistically significant difference in the total incidence of postoperative complications (7.50% ï¼»6/80ï¼½ vs 5.00% ï¼»4/80ï¼½, P > 0.05). CONCLUSION: ThuLEP, with its advantages of notable effect, short operation and hospitalization time, significant improvement of urinary flow dynamics and prostate function, deserves clinical promotion for the treatment of BPH.


Asunto(s)
Terapia por Láser , Hiperplasia Prostática , Tulio , Humanos , Masculino , Hiperplasia Prostática/cirugía , Tulio/uso terapéutico , Estudios Retrospectivos , Terapia por Láser/métodos , Próstata/cirugía , Resección Transuretral de la Próstata/métodos , Resultado del Tratamiento , Complicaciones Posoperatorias , Tempo Operativo , Anciano , Antígeno Prostático Específico/sangre
18.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4672-4686, 2024 Sep.
Artículo en Zh | MEDLINE | ID: mdl-39307805

RESUMEN

The main chemical components of Yangxue Qingnao Wan(YXQNW) were analyzed and identified by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS). According to the mass spectrometry information, Mass Hunter 10.0 analysis software was used to compare the collected quasi-molecular ion peaks and secondary fragment ions with literature and reference substances. A total of 131 compounds were identified from YXQNW, including 11 phenylpropanoids, 11 flavonoids, 42 nitrogen-containing compounds, 12 terpenoids, 17 phthalides, 23 quinones, and 15 other compounds. The anti-aging activity of YXQNW and six compounds from YXQNW, including rosmarinic acid, gallic acid, rutin, umbelliferone, hyperoside, and vanillic acid, were evaluated by D-galactose(D-gal)-induced HT22 cell senescence model. The effects of the compounds on HT22 cell damage and individual cell proliferation ability were observed from overall and individual perspectives by the Beyo Click~(TM) EdU-555 cell proliferation kit, and apoptosis was detected by the Annexin V-FITC/PI double staining apoptosis detection kit. Finally, the anti-aging effect of the compounds was tested by a cell senescence ß-galactosidase staining kit. This study provides a more comprehensive analysis of the chemical components of YXQNW and evaluates its anti-aging effect, which will provide a scientific basis for basic research on the efficacy of YXQNW for the treatment of various neurological diseases, such as Alzheimer's disease(AD), headache, and memory loss.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Ratones , Línea Celular , Envejecimiento/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Humanos
19.
J Hepatol ; 79(6): 1435-1449, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37689322

RESUMEN

BACKGROUND & AIMS: Remodeling the tumor microenvironment is a critical strategy for treating advanced hepatocellular carcinoma (HCC). Yet, how distinct cell populations in the microenvironment mediate tumor resistance to immunotherapies, such as anti-PD-1, remains poorly understood. METHODS: We analyzed the transcriptomic profile, at a single-cell resolution, of tumor tissues from patients with HCC scheduled to receive anti-PD-1-based immunotherapy. Our comparative analysis and experimental validation using flow cytometry and histopathological analysis uncovered a discrete subpopulation of cells associated with resistance to anti-PD-1 treatment in patients and a rat model. A TurboID-based proximity labeling approach was deployed to gain mechanistic insights into the reprogramming of the HCC microenvironment. RESULTS: We identified CD10+ALPL+ neutrophils as being associated with resistance to anti-PD-1 treatment. These neutrophils exhibited a strong immunosuppressive activity by inducing an apparent "irreversible" exhaustion of T cells in terms of cell number, frequency, and gene profile. Mechanistically, CD10+ALPL+ neutrophils were induced by tumor cells, i.e., tumor-secreted NAMPT reprogrammed CD10+ALPL+ neutrophils through NTRK1, maintaining them in an immature state and inhibiting their maturation and activation. CONCLUSIONS: Collectively, our results reveal a fundamental mechanism by which CD10+ALPL+ neutrophils contribute to tumor immune escape from durable anti-PD-1 treatment. These data also provide further insights into novel immunotherapy targets and possible synergistic treatment regimens. IMPACT AND IMPLICATIONS: Herein, we discovered that tumor cells reprogrammed CD10+ALPL+ neutrophils to induce the "irreversible" exhaustion of T cells and hence allow tumors to escape from the intended effects of anti-PD-1 treatment. Our data provided a new theoretical basis for the elucidation of special cell populations and revealed a molecular mechanism underpinning resistance to immunotherapy. Targeting these cells alongside existing immunotherapy could be looked at as a potentially more effective therapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Linfocitos T , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neutrófilos , Inmunoterapia/métodos , Microambiente Tumoral , Linfocitos T CD8-positivos , Fosfatasa Alcalina
20.
Artículo en Inglés | MEDLINE | ID: mdl-33593833

RESUMEN

Two novel ISCR1-associated dfr genes, dfrA42 and dfrA43, were identified from trimethoprim (TMP)-resistant Proteus strains and were shown to confer high level TMP resistance (MIC ≥ 1024 mg/L) when cloned into Escherichia coli These genes were hosted by complex class 1 integrons suggesting their potentials for dissemination. Analysis of enzymatic parameters and TMP affinity were performed, suggesting that the mechanism of TMP resistance for these novel DHFRs is the reduction of binding with TMP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA