Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Reprod Biomed Online ; 47(2): 103211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246104

RESUMEN

RESEARCH QUESTION: Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN: Early porcine embryos were incubated in the presence of 0.5 µmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS: The addition of 0.5 µmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION: XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Embarazo , Animales , Femenino , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Apoptosis , Mitocondrias/metabolismo , Estrés Oxidativo
2.
J Reprod Dev ; 69(1): 10-17, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36403957

RESUMEN

Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 µM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.


Asunto(s)
Blastocisto , Oocitos , Femenino , Embarazo , Porcinos , Animales , Oocitos/metabolismo , Blastocisto/metabolismo , Estrés Oxidativo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Suplementos Dietéticos , Mamíferos/metabolismo
3.
Reprod Domest Anim ; 58(11): 1583-1594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696770

RESUMEN

Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 µM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.


Asunto(s)
Desarrollo Embrionario , Partenogénesis , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Blastocisto , Glutatión/metabolismo , Apoptosis
4.
Reprod Domest Anim ; 57(10): 1255-1266, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780288

RESUMEN

Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 µM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.


Asunto(s)
Técnicas de Cultivo de Embriones , Flavonas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Autofagia , Blastocisto , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Flavonas/metabolismo , Flavonas/farmacología , Glucósidos , Glutatión/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Porcinos
5.
Animals (Basel) ; 14(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338092

RESUMEN

Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a flavonoid derived from Artemisia plants that has beneficial biological activities, such as anti-apoptotic, anti-oxidant, and anti-inflammatory activities. However, the protective effects of eupatilin against oxidative stress and endoplasmic reticulum stress in porcine oocyte maturation are still unclear. To investigate the effect of eupatilin on the development of porcine oocytes after in vitro maturation and parthenogenetic activation, we added different concentrations of eupatilin in the process of porcine oocyte maturation in vitro, and finally selected the optimal concentration following multiple comparisons and analysis of test results using SPSS (version 17.0; IBM, Chicago, IL, USA) software. The results showed that 0.1 µM eupatilin supplementation did not affect the expansion of porcine cumulus cells, but significantly increased the extrusion rate of porcine oocyte polar bodies, the subsequent blastocyst formation rate, and the quality of parthenogenetically activated porcine embryos. Additionally, it reduced the level of reactive oxygen species in cells and increased glutathione production. Further analysis revealed that eupatilin supplementation could reduce apoptosis, DNA double-strand breaks, and endoplasmic reticulum stress. In conclusion, supplementation with 0.1 µM eupatilin during in vitro maturation improved oocyte maturation and subsequent embryo development by reducing oxidative stress and endoplasmic reticulum stress.

6.
Animals (Basel) ; 13(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627386

RESUMEN

Imidacloprid (IMI) is an endogenous neonicotinoid insecticide widely used in agriculture and has attracted researchers' attention because of its risks to the environment and human health. Melatonin (MT) is an antioxidant hormone produced by the pineal gland of the brain. Studies have shown that it has a variety of physiological functions and plays a crucial role in the development of animal germ cells and embryos. The potential protective effects of MT against oocyte damage caused by neonicotinoid pesticide toxicity remain unclear. In this study, we report the toxicity of IMI against, and its effects on the quality of, porcine oocytes and the protective effect of MT on IMI-exposed oocytes. The results show that IMI exposure adversely affected oocyte maturation, while MT supplementation ameliorated its toxic effects. Specifically, IMI exposure increased oxidative stress (OS), endoplasmic reticulum stress (ERS), and apoptosis, which may affect polar body expulsion rates and blastocyst formation. Also, IMI exposure reduced oocyte cleavage rates and the number of cells in blastocysts. However, all of these toxic effects can be restored after a melatonin supplementation treatment. In conclusion, these results suggest that melatonin has a protective effect on IMI-induced defects during porcine oocyte maturation.

7.
Vet Sci ; 10(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36851447

RESUMEN

Chrysoeriol (CHE) is a flavonoid substance that exists in many plants. It has various physiological and pharmacological effects, including anti-inflammatory, antioxidant, anti-tumor, and protective activity, especially for the cardiovascular system and liver. Among common livestock embryos, porcine embryos are often considered high-quality objects for studying the antioxidant mechanisms of oocytes. Because porcine embryos contain high levels of lipids, they are more vulnerable to external stimuli, which affect development. Our study explored the influence of CHE supplementation on oxidative stress in porcine oocytes and its possible mechanisms. Different concentrations of CHE (0, 0.1, 1, and 3 µM) were supplemented in the in vitro culture medium of the porcine oocytes. The results showed that supplementation with 1 µM CHE significantly increased the blastocyst rate and total cell number of embryos in vitro. After finding the beneficial effects of CHE, we measured reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane potential (MMP) when the oocytes reached the 4-cell stage of development and determined the levels of apoptosis, cell proliferation, and autophagy at the blastocyst stage of development. The expression levels of some related genes were preliminarily detected by qRT-PCR. The results showed that the apoptosis of blastocysts in the CHE-treated culture also decreased compared with the untreated culture. Furthermore, CHE downregulated intracellular ROS and increased GSH in the embryos. CHE was also shown to improve the activity of mitochondria and inhibit the occurrence of autophagy. In addition, antioxidant-related genes (SOD1, SOD2, and CAT) and cell pluripotency-related genes (SOX2, OCT4, and NANOG) were upregulated. At the same time, apoptosis-related (Caspase 3) and autophagy-related (LC3B) genes showed a downward trend after supplementation with CHE. These results indicate that CHE improved the development of porcine embryos in vitro by reducing oxidative stress and autophagy levels.

8.
Animals (Basel) ; 13(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37508068

RESUMEN

Widely used as a flame retardant, 2,2'4,4'-tetrabromodiphenyl ether (BDE-47) is a persistent environmental pollutant with toxicological effects, including hepatotoxicity, neurotoxicity, reproductive toxicity, and endocrine disruption. To investigate the toxicological effects of BDE-47 on early porcine embryogenesis in vitro, cultured porcine embryos were exposed to BDE-47 during early development. Exposure to 100 µM BDE-47 decreased the blastocyst rate and mRNA level of pluripotency genes but increased the level of LC3 and the expression of autophagy-related genes. After BDE-47 exposure, porcine embryos' antioxidant capability decreased; ROS levels increased, while glutathione (GSH) levels and the expression of antioxidant-related genes decreased. In addition, BDE-47 exposure reduced mitochondrial abundance and mitochondrial membrane potential levels, downregulated mitochondrial biogenesis-associated genes, decreased endoplasmic reticulum (ER) abundance, increased the levels of GRP78, a marker of ER stress (ERS), and upregulated the expression of ERS-related genes. However, ER damage and low embryo quality induced by BDE-47 exposure were reversed with the ERS inhibitor, the 4-phenylbutyric acid. In conclusion, BDE-47 inhibits the development of early porcine embryos in vitro by inducing mitochondrial dysfunction and ERS. This study sheds light on the mechanisms of BDE-47-induced embryonic toxicity.

9.
Psychol Res Behav Manag ; 15: 597-606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300205

RESUMEN

Background: Psychological resilience is important to mental health and professional development in newly graduated nursing students (NGNSs). However, the association between psychological resilience and mental health in NGNSs is less explored. Purpose: The current study was designed to determine mental health profiles measured by the Kessler 10 scale (K10) and evaluate the non-linear association between psychological resilience and mental health in NGNSs. Methods: A total of 472 NGNSs from the Be Resilient to Nursing Career program were assessed using the K10 and ten-item Connor-Davidson Resilience Scale (CD-RISC 10). Latent profile analysis and generalized additive model analysis were performed. Results: A four-class model based on the K10 was identified: lowest (28.0%), lower-middle (36.4%), upper-middle (26.1%), and highest (9.5%) subgroups. Academic degree and psychological resilience were significant indicators of mental health profiles. Psychological resilience was negatively and nonlinearly correlated with mental health when the CD-RISC 10 score was >17. Conclusion: There exists heterogeneity in NGNSs' mental health. The negative and nonlinear association between psychological resilience and mental health can only be confirmed in NGNSs with moderate and high resilience levels.

10.
PeerJ ; 10: e13766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910774

RESUMEN

Wedelolactone (WDL) is a coumaryl ether compound extracted from the traditional Chinese medicinal plant, Eclipta prostrata L. It is a natural polyphenol that exhibits a variety of pharmacological activities, such as anti-inflammatory, anti-free radical, and antioxidant activities in the bone, brain, and ovary. However, its effect on embryonic development remains unknown. The present study explored the influence of WDL supplementation of porcine oocytes culture in vitro on embryonic development and the underlying mechanisms and its effect on the levels of Kelch-like ECH-associated protein 1/nuclear factor-erythroid 2-related factor 2/antioxidant response element (Keap1/Nrf2/ARE). The results showed that WDL (2.5 nM) significantly increased the blastocyst formation rate, mitochondrial activity, and proliferation ability while reducing the reactive oxygen species accumulation, apoptosis, and autophagy. These findings suggested that WDL can enhance the growth and development of early porcine embryos to alleviate oxidative stress and autophagy through regulating NRF2 and microtubule-associated protein 1 light chain 3 (MAP1LC3) gene expression levels.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Femenino , Animales , Porcinos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Autofagia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA