Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 602(7896): 229-233, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140383

RESUMEN

Ultracold assembly of diatomic molecules has enabled great advances in controlled chemistry, ultracold chemical physics and quantum simulation with molecules1-3. Extending the ultracold association to triatomic molecules will offer many new research opportunities and challenges in these fields. A possible approach is to form triatomic molecules in a mixture of ultracold atoms and diatomic molecules by using a Feshbach resonance between them4,5. Although ultracold atom-diatomic-molecule Feshbach resonances have been observed recently6,7, using these resonances to form triatomic molecules remains challenging. Here we report on evidence of the association of triatomic molecules near the Feshbach resonance between 23Na40K molecules in the rovibrational ground state and 40K atoms. We apply a radio-frequency pulse to drive the free-bound transition in ultracold mixtures of 23Na40K and 40K and monitor the loss of 23Na40K molecules. The association of triatomic molecules manifests itself as an additional loss feature in the radio-frequency spectra, which can be distinguished from the atomic loss feature. The observation that the distance between the association feature and the atomic transition changes with the magnetic field provides strong evidence for the formation of triatomic molecules. The binding energy of the triatomic molecules is estimated from the measurements. Our work contributes to the understanding of the complex ultracold atom-molecule Feshbach resonances and may open up an avenue towards the preparation and control of ultracold triatomic molecules.

2.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367657

RESUMEN

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Asunto(s)
Facies , Linfedema , Microcefalia , Enfermedades de la Retina , Displasia Retiniana , Animales , Puntos de Control del Ciclo Celular/genética , Inestabilidad Cromosómica , Discapacidades del Desarrollo , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenotipo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Analyst ; 149(10): 2855-2863, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602369

RESUMEN

Polymeric membrane ion-selective electrodes (ISEs) have been widely used in environmental monitoring. However, in complicated marine environments, marine biofouling usually becomes a sticky problem for these electrodes. Herein, for the first time, a novel maintenance-free antifouling potentiometric marine sensor based on a self-polishing coating (SPC) is proposed. The SPC is synthesized by using the seeded emulsion polymerization method based on the triisopropylsilyl methacrylate monomer as the regulator of the self-renewal rate. This coating can be simply modified onto the electrode surface by drop-casting. The silyl acrylate side groups of the obtained SPC on the sensor surface can be hydrolyzed in the marine alkaline medium. The shear movement of seawater driven by sea waves, wind, gravity, or vibration removes the leftover (fouled) brittle polymer backbone and thus the fouling marine microorganisms. As a proof-of-concept experiment, a polymeric membrane Ca2+-ISE is chosen as a model. Compared to the unmodified electrode, the SPC-coated Ca2+-ISE exhibits remarkable improved antifouling properties in terms of superior anti-adhesive abilities towards marine microorganisms, such as bacterial cells and algae and excellent long-term stability even in the presence of high levels of marine microorganisms. Since no additional manual maintenance is required for maintaining the antifouling abilities of the sensor, the proposed self-polishing sensor may lay an important foundation for construction of unattended long-term potentiometric monitoring systems in real marine environments.

4.
Inorg Chem ; 63(15): 6836-6844, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38567451

RESUMEN

Endohedral metallofullerenes show great promise as molecular-scale memory units due to their robust architecture and protective capability for encapsulated atoms. However, the flat potential-energy surface within the cage often results in a severe disorder of encapsulated atoms. Here, we focused on prototypical systems involving Li@C60 on metallic surfaces, emphasizing the electrode's confinement effect on caged dynamics. We demonstrated that the varying interfacial stabilities induced by Li motion predominantly depend on the synergetic effect of van der Waals forces and covalent bonds rather than the previously assumed electrostatic interactions. We unveiled that the repulsion effect between encapsulated atom and the metal electrode primarily arises from the antibonding states between the metal states below the Fermi level and the degenerated frontier orbitals from HOMO-4 to HOMO. By manipulating orbital interactions, we observed an ordered arrangement of the encapsulated atom on Rec-Pt(111) at room temperature. Furthermore, our findings underscore the disruptive influence of electric fields on the stability of distinct Li positions, a phenomenon closely tied to the dipole moment induced by Li motion. This research provides a new perspective on the confined internal dynamics of endohedral metallofullerenes by manipulating cage-electrode interactions, contributing to precisely controlled molecular electronics.

5.
Inorg Chem ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943593

RESUMEN

Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag22(Tab)24](PF6)20·16CH3OH·6Et2O (Ag22·16CH3OH·6Et2O), alongside an Ag(I) cluster [Ag20(Tab)12(PhCOO)10(MeCN)2(H2O)](PF6)10·11MeCN (Ag20·11MeCN). Ag22 has a distinct hierarchical supratetrahedral structure with a central {Ag6} kernel surrounded by four [Ag4(Tab)6]4+ units. High-resolution electrospray ionization mass spectra demonstrate that Ag22 has two free electrons, indicating a superatomic core. Ag20 has a drum-like [Ag12(Tab)6(PhCOO)6(H2O)]6+ inner core capped by two tetrahedral-like [Ag4(Tab)3(PhCOO)2(MeCN)]2+ units. Ag20 can be transformed into Ag22 after its reaction with NaBH4 in solution. Antibacterial measurements reveal that Ag22 has a significantly lower minimum inhibitory concentration than that of the Ag20 cluster. This work not only extends the stabilization of silver(0/I) clusters to neutral thiol ligands but also offers new materials for the development of novel antibacterial materials.

6.
J Fluoresc ; 34(2): 531-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37300784

RESUMEN

Developing fluorescence switching as functional system is highly desirable for potential applications in the fields of light-responsive materials or devices. Attempt to construct fluorescence switching system tend to focus on the high fluorescence modulation efficiency, especially in solid state. Herein, a photo-controlled fluorescence switching system was constructed with photochromic diarylethene and trimethoxysilane modified zinc oxide quantum dots (Si-ZnO QDs) successfully. It was verified by the measurement of modulation efficiency, fatigue resistance as well as theoretical calculation. Upon irradiation with UV/Vis lights, the system exhibited excellent photochromic property and photo-controlled fluorescence switching performance. Furthermore, the excellent fluorescence switching characters could also be realized in solid state and the fluorescence modulation efficiency was determined to be 87.4%. The results will provide new strategies to the construction of reversible solid-state photo-controlled fluorescence switching for the application in the fields of optical data storage and security labels.

7.
J Chem Phys ; 160(3)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38235798

RESUMEN

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression. Our investigation vividly reveals the phase transition behaviors of MnBi2Te4 under high pressure cycling and paves the experimental way to find topological phases under high pressure.

8.
Childs Nerv Syst ; 40(7): 2227-2233, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635072

RESUMEN

PURPOSE: Desmoplastic fibroma (DF) is an uncommon intermediate bone tumor rarely involving the skull with unidentified pathogenesis. We report the first case of pediatric temporoparietal cranial desmoplastic fibroma (DF) with a CTNNB1 gene mutation and review the previous literature. CASE PRESENTATION: A 3-year-old boy had a firm, painless mass on the right temporoparietal region for 22 months. The cranial CT scan showed isolated osteolytic destruction in the outer plate and diploe of the right temporoparietal bone. Gross total resection of the lesion and cranioplasty were performed. After that, a growing epidural hematoma was observed so another operation was performed to remove the artificial titanium plate. Postoperative pathology indicated a DF diagnosis and molecular pathology suggested a missense mutation in exon 3 of the CTNNB1 gene (c.100G > A,p.Gly34Arg). CONCLUSION: Pediatric cranial DF is rare and easy to be misdiagnosed before operation. For cranial DF, lesion resection can be performed and perioperative management should be strengthened. Mutations in the CTNNB1 gene might be one of the molecular pathologic features of DF.


Asunto(s)
Fibroma Desmoplásico , Neoplasias Craneales , beta Catenina , Humanos , Masculino , beta Catenina/genética , Preescolar , Fibroma Desmoplásico/genética , Fibroma Desmoplásico/cirugía , Fibroma Desmoplásico/patología , Fibroma Desmoplásico/diagnóstico por imagen , Neoplasias Craneales/genética , Neoplasias Craneales/cirugía , Neoplasias Craneales/diagnóstico por imagen , Neoplasias Craneales/patología , Mutación , Tomografía Computarizada por Rayos X
9.
Angew Chem Int Ed Engl ; 63(9): e202313185, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38059914

RESUMEN

Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO4 2- , PO3 2- , SeO4 2- , etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4 ) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.

10.
J Neurosci ; 42(43): 8184-8199, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36109166

RESUMEN

Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENT Many studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.


Asunto(s)
Drogas de Diseño , Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Masculino , Ratas , Animales , Sustancia Gris Periacueductal/fisiología , Astrocitos , Nocicepción/fisiología , Motivación
11.
J Am Chem Soc ; 145(28): 15393-15404, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37429024

RESUMEN

Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum-tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm-2 and 3.2 A mgPt-1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm-2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.

12.
Photochem Photobiol Sci ; 22(10): 2389-2399, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479954

RESUMEN

Carbon dots (CDs) as luminescent zero-dimensional carbon nanomaterials have good aqueous dissolution, photostability, high quantum yield, and tunability of emission color. It has great application potential in many fields, including bioimaging, labeling of biological species, drug delivery, and sensing in biomedical. However, controlling the fluorescence emission of carbon dots remains a formidable challenge. Herein, we designed and exploited a photo-controlled fluorescent switching based on photochromic diarylethene (DT) and CDs for bioimaging. It could be modulated reversibly between "ON" and "OFF" under UV/vis light exposure. The fluorescent modulation efficiency was as high as 95.3%. The fluorescent switching could be used to the bioimaging in HeLa cells with low cell toxicity. Therefore, this fluorescent switching could be a promising candidate in many potential application areas, especially in bioimaging.


Asunto(s)
Carbono , Colorantes , Humanos , Células HeLa , Sistemas de Liberación de Medicamentos , Fluorescencia
13.
Analyst ; 148(10): 2352-2361, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37098798

RESUMEN

Phospholipase C (PLC) has important biological functions in specific cancer types, immune disorders and neurodegeneration. Here, an ultrasensitive electrochemical sensor for PLC was developed via signal amplification based on breathing atom transfer radical polymerization (ATRP). First, phosphatidylethanolamine (PE) was immobilized on the surface of a gold electrode by L-cysteine and cross-linker. Then, PE was specially hydrolyzed by PLC to obtain the phosphate groups and tethered with the ATRP initiator α-bromophenacetic acid (BPAA) by the coordination action of Zr4+. After the breathing ATRP, a large number of electroactive monomers (ferrocenylmethyl methacrylate, FcMMA) were successfully grafted from BPAA. The experimental results indicated that the detection signal of the obtained electrode (sensor) was proportional to the concentration of PLC. The sensor showed a low detection limit of 0.270 U L-1 and a wide linear range of 1-40 U L-1 (R2 = 0.997). Most importantly, the sensor was successfully applied to detect PLC in breast cancer cells (MCF-7, MDA-MB-231) and nontumor cells (MCF-10A). The value obtained by our electrochemical sensor had no obvious difference from that determined by the commercial ELISA kit. These results showed that the fabricated PLC sensor had acceptable potential in clinical applications.


Asunto(s)
Técnicas Biosensibles , ADN , ADN/análisis , Polimerizacion , Técnicas Biosensibles/métodos , Límite de Detección , Electrodos , Técnicas Electroquímicas/métodos
14.
Angew Chem Int Ed Engl ; 62(43): e202307096, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37394778

RESUMEN

Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size-shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.

15.
Angew Chem Int Ed Engl ; 62(12): e202218318, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36578144

RESUMEN

Designing polymeric photocatalysts at the molecular level to modulate the photogenerated charge behavior is a promising and challenging strategy for efficient hydrogen peroxide (H2 O2 ) photosynthesis. Here, we introduce electron-deficient 1,4-dihydroxyanthraquinone (DHAQ) into the framework of resorcinol-formaldehyde (RF) resin, which modulates the donor/acceptor ratio from the perspective of molecular design for promoting the charge separation. Interestingly, H2 O2 can be produced via oxygen reduction and water oxidation pathways, verified by isotopic labeling and in situ characterization techniques. Density functional theory (DFT) calculations elucidate that DHAQ can reduce the energy barrier for H2 O2 production. RF-DHAQ exhibits excellent overall photosynthesis of H2 O2 with a solar-to-chemical conversion (SCC) efficiency exceeding 1.2 %. This work opens a new avenue to design polymeric photocatalysts at the molecular level for high-efficiency artificial photosynthesis.

16.
Angew Chem Int Ed Engl ; 62(23): e202302829, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965108

RESUMEN

Rational design of polymer structures at the molecular level promotes the iteration of high-performance photocatalyst for sustainable photocatalytic hydrogen peroxide (H2 O2 ) production from oxygen and water, which also lays the basis for revealing the reaction mechanism. Here we report a benzoxazine-based m-aminophenol-formaldehyde resin (APFac) polymerized at ambient conditions, exhibiting superior H2 O2 yield and long-term stability to most polymeric photocatalysts. Benzoxazine structure was identified as the crucial photocatalytic active segment in APFac. Favorable adsorption of oxygen/intermediates on benzoxazine structure and commendable product selectivity accelerated the reaction kinetically in stepwise single-electron oxygen reduction reaction. The proposed benzoxazine-based phenolic resin provides the possibility of production in batches and industrial application, and sheds light on the de novo design and analysis of metal-free polymeric photocatalysts.

17.
Biochem Cell Biol ; 100(6): 458-472, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342046

RESUMEN

FYCO1, an autophagy adaptor, plays an essential role in the trafficking toward the plus-end of microtubules and the fusion of autophagosomes. Autophagic dysfunction is involved in numerous disease states, including cancers. Previous studies have implicated FYCO1 as one of the critical genes involved in the adenoma to carcinoma transition, but the biological function and mechanism of FYCO1 in carcinogenesis remain unclear. This study aims to elucidate the role and mechanism of up- and downregulation of FYCO1 in mediating tumor effects in HeLa cells. Functionally, FYCO1 promotes cellular migration, invasion, epithelial-mesenchymal transition, invadopodia formation, and matrix degradation, which are detected through wound healing, transwell, immunofluorescence, and Western blot approaches. Interestingly, the data show that although FYCO1 does not affect HeLa cell proliferation, cell cycle distribution, nor vessels' formation, FYCO1 can block the apoptotic function. FYCO1 inhibits cleavage of PARP, caspase3, and caspase9 and increases Bcl-2/Bax ratio. Then, we used CK666, an Arp2/3 specific inhibitor, to confirm that FYCO1 may promote the migration and invasion of HeLa cells through the CDC42/N-WASP/Arp2/3 signaling pathway. Taken together, these results provide a new insight that FYCO1, an autophagy adaptor, may also be a new regulator of tumor metastasis.


Asunto(s)
Podosomas , Humanos , Células HeLa , Podosomas/metabolismo , Microtúbulos , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Transducción de Señal , Línea Celular Tumoral , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
18.
Mol Genet Genomics ; 297(6): 1553-1564, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35980487

RESUMEN

In this study, we report on two different GJA8 variants related to congenital eye anomalies in two unrelated families, respectively. GJA8 (or Cx50) encoding a transmembrane protein to form lens connexons has been known as a common causative gene in congenital cataracts and its variants have recently been reported related to a wide phenotypic spectrum of eye defects. We identified two GJA8 variants, c.134G>T (p.Try45Leu, W45L) detected in a cataract family by Sanger sequencing and c.281G>A (p.Gly94Glu, G94E) found in a family with severe eye malformations including microphthalmia by whole-exome sequencing. These two variants were absent in healthy population and predicted deleterious by bioinformatic analysis. Furthermore, we compared the expression in cell lines between these mutants and the wildtype to explore their potential mechanism. Cell counting kit-8 assay showed that overexpression of either W45L or G94E decreased cell viability compared with wild-type Cx50 and the control. A lower protein level in W45L found by western blotting and fewer punctate fluorescent signals showed by fluorescence microscopy suggested that W45L may have less protein expression. A higher G94E protein level and abundant dotted distribution indicated that G94E may cause aberrant protein degradation and accumulation. Such results from in vitro assays confirmed the impact of these two variants and gave us a hint about their different pathogenic roles in different phenotypes. In conclusion, our study is the first to have the functional analysis of two GJA8 variants c.134G>T and c.281G>A in Chinese pedigrees and explore the impact of these variants, which can help in prenatal diagnosis and genetic counseling as well in basic studies on GJA8.


Asunto(s)
Catarata , Anomalías del Ojo , Humanos , Conexinas/genética , Conexinas/metabolismo , Linaje , Catarata/genética , Catarata/metabolismo , Catarata/patología , Pueblo Asiatico/genética , Anomalías del Ojo/genética , China , Mutación
19.
Phys Rev Lett ; 129(3): 033401, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905340

RESUMEN

We have demonstrated the resonant control of the elastic scattering cross sections in the vicinity of Feshbach resonances between ^{23}Na^{40}K molecules and ^{40}K atoms by studying the thermalization between them. The elastic scattering cross sections vary by more than 2 orders of magnitude close to the resonance, and can be well described by an asymmetric Fano profile. The parameters that characterize the magnetically tunable s-wave scattering length are determined from the elastic scattering cross sections. The observation of resonantly controlled elastic scattering cross sections opens up the possibility to study strongly interacting atom-molecule mixtures and improve our understanding of the complex atom-molecule Feshbach resonances.

20.
Am J Med Genet A ; 188(2): 540-547, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741396

RESUMEN

This study aimed to identify the disease-causing gene of three Chinese families with glaucoma. Whole exome sequencing was performed on the probands and detected three different variants (c.405C>A (p.Cys135Ter), c.851G>T (p.Ser284Ile), and c.392C>T (p.Ser131Leu)) in FOXC1 as a causative gene of glaucoma, and Sanger sequencing was performed for verification and cosegregation analysis. Three in silico tools all predicted these two missense variants to be probably disease-causing. Western blot analysis, immunofluorescence, and dual-luciferase assay were further used to evaluate the effect of FOXC1 missense variants, and demonstrated that the two variants resulted in decreased transactivation activity of FOXC1 although the variants had no effect on the protein amount and the nucleus subcellar localization of FOXC1 compared with the wild type, which implies that both of two variants may be probably pathogenic. In this study, we reported two novel FOXC1 variants as well as a reported variant and the phenotypes associated to these variants, which expands the spectrum and relevant phenotypes of FOXC1 variants. Additionally, the functional analysis of FOXC1 variants provides further insight into the possible pathogenesis of anterior segment anomaly related to FOXC1.


Asunto(s)
Anomalías del Ojo , Glaucoma , Segmento Anterior del Ojo/anomalías , China/epidemiología , Anomalías del Ojo/genética , Factores de Transcripción Forkhead/genética , Glaucoma/genética , Humanos , Mutación Missense/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA