Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Chem Soc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162360

RESUMEN

Facet control and phase engineering of metal nanomaterials are both important strategies to regulate their physicochemical properties and improve their applications. However, it is still a challenge to tune the exposed facets of metal nanomaterials with unconventional crystal phases, hindering the exploration of the facet effects on their properties and functions. In this work, by using Pd nanoparticles with unconventional hexagonal close-packed (hcp, 2H type) phase, referred to as 2H-Pd, as seeds, a selective epitaxial growth method is developed to tune the predominant growth directions of secondary materials on 2H-Pd, forming Pd@NiRh nanoplates (NPLs) and nanorods (NRs) with 2H phase, referred to as 2H-Pd@2H-NiRh NPLs and NRs, respectively. The 2H-Pd@2H-NiRh NRs expose more (100)h and (101)h facets on the 2H-NiRh shells compared to the 2H-Pd@2H-NiRh NPLs. Impressively, when used as electrocatalysts toward hydrogen oxidation reaction (HOR), the 2H-Pd@2H-NiRh NRs show superior activity compared to the NiRh alloy with conventional face-centered cubic (fcc) phase (fcc-NiRh) and the 2H-Pd@2H-NiRh NPLs, revealing the crucial role of facet control in enhancing the catalytic performance of unconventional-phase metal nanomaterials. Density functional theory (DFT) calculations further unravel that the excellent HOR activity of 2H-Pd@2H-NiRh NRs can be attributed to the more exposed (100)h and (101)h facets on the 2H-NiRh shells, which possess high electron transfer efficiency, optimized H* binding energy, enhanced OH* binding energy, and a low energy barrier for the rate-determining step during the HOR process.

2.
Mol Pain ; 20: 17448069241226960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38172075

RESUMEN

Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.


Asunto(s)
Analgésicos Opioides , Hiperalgesia , Ratas , Masculino , Animales , Hiperalgesia/metabolismo , Analgésicos Opioides/metabolismo , Ratas Sprague-Dawley , Amígdala del Cerebelo/metabolismo , Dolor/metabolismo , Fentanilo , Corteza Prefrontal/metabolismo
3.
Inorg Chem ; 63(7): 3411-3417, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38311915

RESUMEN

In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.

4.
Environ Res ; 244: 117957, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128603

RESUMEN

Coal mining can significantly impact vegetation evolution, yet the limited information on its patterns and driving factors hampers efforts to mitigate these effects and reclaim abandoned mines. This study aimed to 1) examine vegetation evolution in a semiarid steppe watershed in northeast China; and 2) characterize the driving factors behind this evolution. We analyzed the impact of twelve selected driving factors on fractional vegetation coverage (FVC) from 2000 to 2021 using a dimidiate pixel model, Sen's slope analysis, Mann-Kendall trend test, coefficient of variation analysis, and Geodetector model. At a significance level of α = 0.05, our findings revealed a south-to-north decline pattern in FVC, a significant decrease trend in proximity to coal mines, and a notable increase trend adjacent to river channels. Approximately 37% of the watershed exhibited low FVC, while the overall temporal trend across the watershed was deemed insignificant. Areas surrounding the mines experienced a substantial reduction in FVC due to coal mining activities, while FVC variations across the watershed were linked to precipitation, temperature, and soil type. FVC predictions improved notably when interactions between multiple two-way factors were considered. Each driving factors displayed an optimal range (e.g., precipitation = 63-71 mm) for maximizing FVC. Given the study watershed's status as a national energy base, understanding vegetation responses to coal mining and climate-environment changes is crucial for sustaining fragile terrestrial ecosystems and socioeconomic development. Achieving a long-time balance between coal extraction and ecological protection is essential. The study outcomes hold significant promise for advancing ecological conservation, vegetation restoration, and mitigation of environmental degradation in semiarid regions affected by extensive coal mining and climate fluctuations. These findings contribute to the strategic management of such areas, promoting sustainable practices amidst evolving environmental challenges.


Asunto(s)
Minas de Carbón , Ecosistema , Pradera , Temperatura , China , Carbón Mineral
5.
BMC Nephrol ; 25(1): 252, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112935

RESUMEN

MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.


Asunto(s)
Enfermedades Renales , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Estrés Oxidativo , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Cálculos Renales/genética , Cálculos Renales/metabolismo
6.
Palliat Support Care ; : 1-7, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736428

RESUMEN

OBJECTIVES: In Chinese culture, family members are the main decision maker on end-of-life (EoL) issues for patients with advanced cancer. Yet little is known about Chinese families' confidence in making EoL decisions and its associated factors. This study aims to investigate the status and associated factors of Chinese family members' confidence in making EoL decisions for patients with advanced cancer. METHODS: This cross-sectional study used a convenience sample of 147 family members of patients with stage III or stage IV cancer from a tertiary cancer center in Guangzhou, China. The questionnaires included demographic information of patients and their family members, patients' EoL preferences, and the Chinese version of the Family Decision-Making Self-Efficacy (FDMSE) Scale. RESULTS: A total of145 family members (98.64%) completed the questionnaires. The average score of FDMSE was 3.92 ± 0.53. A multiple regression analysis showed that the factors associated with FDMSE included patients' duration of disease, health insurance, participation in EoL decision-making, the expression of unfilled wishes, and family members' employment status. SIGNIFICANCE OF RESULTS: Chinese family members were not confident enough in making EoL decisions for patients with advanced cancer. It is recommended to develop cultural-tailored advanced care planning models to clarify patient preferences and to enhance the family members' self-efficacy in making EoL decisions with or for patients with advanced cancer.

7.
Angew Chem Int Ed Engl ; 63(26): e202402841, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647519

RESUMEN

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

8.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6200-6215, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114227

RESUMEN

This study aimed to evaluate the efficacy and safety of various Chinese patent medicines in the treatment of inflammatory response in chronic glomerulonephritis(CGN) based on network Meta-analysis. Randomized controlled trial(RCT) of oral Chinese patent medicines for improving inflammatory response in patients with CGN was retrieved from databases such as CNKI, Wanfang, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science from database inception to March 2023. All investigators independently screened the literature, extracted data, and evaluated the quality. Stata 16.0 and RevMan 5.4.1 software were used to analyze the data of the literature that met the quality standards. Finally, 71 RCTs were included, involving 7 Chinese patent medicines. The total sample size was 6 880 cases, including 3 441 cases in the test group and 3 439 cases in the control group. The network Meta-analysis showed that(1) in terms of reducing TNF-α, the top 3 optimal interventions according to the surface under the cumulative ranking curve(SUCRA) were Shenyanshu Capsules/Granules/Tablets+conventional western medicine, Huangkui Capsules+conventional western medicine, and Bailing Capsules+conventional western medicine.(2) In terms of reducing hs-CRP, the top 3 optimal interventions according to SUCRA were Yishen Huashi Granules+conventional western medicine, Huangkui Capsules+conventional wes-tern medicine, and Bailing Capsules+conventional western medicine.(3) In terms of reducing IL-6, the top 3 optimal interventions according to SUCRA were Yishen Huashi Granules+conventional western medicine, Bailing Capsules+conventional western medicine, and Shenyan Kangfu Tablets+conventional western medicine.(4) In terms of reducing 24hUTP, the top 3 optimal interventions according to SUCRA were Shenyan Kangfu Tablets+conventional western medicine, Bailing Capsules+conventional western medicine, and Huangkui Capsules+conventional western medicine.(5) In terms of reducing Scr, the top 3 optimal interventions according to SUCRA were Bailing Capsules+conventional western medicine, Shenyanshu Capsules/Granules/Tablets+conventional western medicine, and Yishen Huashi Granules+conventional western medicine.(6) In terms of reducing BUN, the top 3 optimal interventions according to SUCRA were Yishen Huashi Granules+conventional western medicine, Shenyanshu Capsules/Granules/Tablets+conventional western medicine, and Bailing Capsules+conventional western medicine.(7) In terms of improving the clinical total effective rate, the top 3 optimal interventions according to SUCRA were Huangkui Capsules+conventional western medicine, Kunxian Capsules+conventional western medicine, and Yishen Huashi Granules+conventional western medicine. The results showed that the combination of conventional western medicine and Chinese patent medicine could reduce the expression of serum inflammatory factors TNF-α, hs-CRP, and IL-6 and inhibit the inflammatory response. The combination of conventional western medicine and Chinese patent medicine was superior to conventional western medicine alone in reducing Scr, BUN, and 24hUTP, and improving the clinical total effective rate of treatment. Due to the limitation of the quantity and quality of literature included, the above conclusions need to be validated by more high-quality studies.


Asunto(s)
Medicamentos Herbarios Chinos , Glomerulonefritis , Humanos , Factor de Necrosis Tumoral alfa , Metaanálisis en Red , Medicamentos sin Prescripción , Proteína C-Reactiva , Interleucina-6 , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis/tratamiento farmacológico
9.
J Pain Res ; 17: 1243-1256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524691

RESUMEN

Purpose: Functional connectivity between the prelimbic medial prefrontal cortex (PL-mPFC) and the core of the nucleus accumbens (NAc core) predicts pain chronification. Inhibiting the apoptosis of oligodendrocytes in the PL-mPFC prevents fentanyl-induced hyperalgesia in rats. However, the role of prefrontal cortex (PFC)-NAc projections in opioid-induced hyperalgesia (OIH) remains unclear. Herein, we explored the role of the PL-NAc core circuit in fentanyl-induced hyperalgesia. Methods: An OIH rat model was established, and patch-clamp recording, immunofluorescence, optogenetics, and chemogenetic methods were employed for neuron excitability detection and nociceptive behavioral assessment. Results: Our results showed decreased activity of the right PL-mPFC layer V output neurons in rats with OIH. Similarly, the excitability of the NAc core neurons receiving glutamatergic projections from the PL-mPFC decreased in OIH rats, observed by the light-evoked excitatory postsynaptic currents/light-excited inhibitory postsynaptic currents ratio (eEPSC/eIPSC ratio). Fentanyl-induced hyperalgesia was reversed by optogenetic activation of the PL-NAc core pathway, and chemogenetic suppression of this pathway induced hyperalgesia in control (saline-treated) rats. However, behavioral hyperalgesia was not aggravated by this chemogenetic suppression in OIH (fentanyl-treated) rats. Conclusion: Our findings indicate that inactivation of the PL-NAc core pathway may be a cause of OIH and restoring the activity of this pathway may provide a strategy for OIH treatment.

10.
J Colloid Interface Sci ; 664: 284-298, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471191

RESUMEN

Water wetting induced corrosion is the core issue for uncovering the corrosion mechanism in multiphase flow environments, relevant to many industrial applications. Here, we experimentally investigated the dynamic failure of an oil film attached on the pre-wetted model surfaces by the electrochemical current detection using an "Alternate Wetting Cell" and the direct visualization of near-wall fluid states. The oil pre-wetted surface performed a superior corrosion mitigation efficiency, exhibiting a protective oil film with a duration time at least 5 times longer than the water pre-wetted surface. It confirms that the oil film rupture is a combined process of the local penetration and pinning of micro-droplets and the phase redistribution of the near-wall fluids. Corrosion finally initiates and propagates on the surface once the droplets pin there or damage the oil film. The result suggests new control strategies for materials corrosion in complex systems by surface modification and fluid management.

11.
Toxicon ; 240: 107639, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311256

RESUMEN

Wild mushroom poisoning is a global public health concern, with mushrooms containing amatoxins being the main cause of fatalities. Mushrooms from the genus Amanita and Galerina contain amatoxins. Here we present a case of wild mushroom poisoning that affected three individuals, resulting in two fatalities. Within 10-15 hours after consumption, they experienced symptoms of gastroenteritis such as vomiting, abdominal pain, and diarrhea. One individual sought medical attention promptly and recovered, while the other two sought medical help nearly two or three days after the onset of symptoms, by which time their conditions had already worsened and led to their deaths. The mushrooms were identified belonging to genus Galerina, and laboratory test revealed variations in toxin levels among mushrooms collected from different parts of the decaying stump. The higher levels of α-amanitin, ß-amanitin, and γ-amanitin were detected near the base of the tree stump, but trace levels of α-amanitin were found near the top of the stump, while ß-amanitin and γ-amanitin were undetectable. This case emphasizes the importance of seeking immediate medical attention when experiencing delayed-onset gastrointestinal symptoms, as it may indicate more severe mushroom poisoning, particularly amatoxin poisoning. Timely and appropriate treatment is equally important. Additionally, consuming different units of the mushrooms in the same incident can lead to varying prognoses due to differences in toxin levels.


Asunto(s)
Intoxicación por Setas , Humanos , Intoxicación por Setas/diagnóstico , Intoxicación por Setas/terapia , Alfa-Amanitina , Salud Pública , Amanitinas/análisis , Amanita
12.
Phys Med Biol ; 69(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347732

RESUMEN

Objective. Chest x-ray image representation and learning is an important problem in computer-aided diagnostic area. Existing methods usually adopt CNN or Transformers for feature representation learning and focus on learning effective representations for chest x-ray images. Although good performance can be obtained, however, these works are still limited mainly due to the ignorance of mining the correlations of channels and pay little attention on the local context-aware feature representation of chest x-ray image.Approach. To address these problems, in this paper, we propose a novel spatial-channel high-order attention model (SCHA) for chest x-ray image representation and diagnosis. The proposed network architecture mainly contains three modules, i.e. CEBN, SHAM and CHAM. To be specific, firstly, we introduce a context-enhanced backbone network by employing multi-head self-attention to extract initial features for the input chest x-ray images. Then, we develop a novel SCHA which contains both spatial and channel high-order attention learning branches. For the spatial branch, we develop a novel local biased self-attention mechanism which can capture both local and long-range global dependences of positions to learn rich context-aware representation. For the channel branch, we employ Brownian Distance Covariance to encode the correlation information of channels and regard it as the image representation. Finally, the two learning branches are integrated together for the final multi-label diagnosis classification and prediction.Main results. Experiments on the commonly used datasets including ChestX-ray14 and CheXpert demonstrate that our proposed SCHA approach can obtain better performance when comparing many related approaches.Significance. This study obtains a more discriminative method for chest x-ray classification and provides a technique for computer-aided diagnosis.


Asunto(s)
Diagnóstico por Computador , Tórax , Rayos X , Radiografía
13.
Endocrine ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861116

RESUMEN

AIM: To analysis the change of electrogastrogram (EGG) in patients with type 2 diabetes mellitus (T2DM), and evaluate the prevalence of abnormal gastric electrical rhythm (AGER) and its relative influencing factors. METHODS: A total of 65 patients with T2DM hospitalized at the Second Affiliated Hospital of Soochow University from Dec. 2020 to Dec. 2021 were included in the cross-sectional study. General information, clinical data, and medical history data of all study subjects, including name, gender, body mass index (BMI), duration of diabetes, anti-diabetic therapies, high blood pressure (HBP) history, smoking history, and medication history, were completely collected. The results of laboratory tests, including biochemical parameters, glycosylated hemoglobin (HbA1c), fasting C-peptide, 2 h postprandial C-peptide, 24 h urine total protein (24 hUTP), urine microalbumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were recorded. EGG, Gastroparesis Cardinal Symptom Index (GCSI), gastric emptying ultrasound, fundus examination, carotid artery ultrasonography, cardiac autonomic function test, heart rate variability (HRV) were all examined and recorded as well. According to the results of EGG, the subjects were divided into normal gastric electrical rhythm (NGER) group and abnormal gastric electrical rhythm (AGER) group. RESULTS: (1) Fasting blood glucose (FBG), HbA1c, the presence of diabetic peripheral neuropathy (DPN) and diabetic cardiac autonomic neuropathy (DCAN) were significantly higher in the AGER group (p < 0.05). Low frequency (LF) and high frequency (HF), the indicators of HRV, were significantly lower in the AGER group (p < 0.05). In addition, the prevalence of feeling excessively full after meals, loss of appetite, and stomach or belly visibly larger after meals of gastrointestinal symptoms of gastroparesis were significantly higher in the AGER group (p < 0.05). Multiple logistic regression analysis showed that FBG and the prevalence of DCAN were the independent risk factors. CONCLUSION: AGER was associated with high FBG and the presence of DCAN. EGG examination is recommended for patients with gastrointestinal symptoms and clues of DCAN.

14.
Environ Pollut ; 360: 124676, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103039

RESUMEN

The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.

15.
Chem Sci ; 15(30): 11699-11718, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092108

RESUMEN

Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.

16.
Brain Behav ; 14(1): e3369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376016

RESUMEN

PURPOSE: The motor symptoms (MS) of Parkinson's disease (PD) have been affecting the quality of life in patients. In clinical practice, most patients with PD report that MS are more severe in winter than in summer, and hyperthermic baths (HTB) could temporarily improve MS. The study aimed to evaluate the effects of seasonal variation and aquatic thermal environment of HTB on the MS of PD. PATIENTS AND METHODS: A cross-sectional study of 203 Chinese Han patients was performed. Univariate and multivariate analyses were performed to analyze seasonal variation in MS relative to baseline data (sex, age at onset, duration, season of birth, Hoehn and Yahr stage, family history, levodopa equivalent dose, and the effect of HTB on MS). Ten subjects participated in the HTB study, and one patient dropped out. The paired Wilcoxon rank test was used to assess the differences in the Movement Disorder Society-United Parkinson's disease Rating Scale (MDS-UPDRS) part III motor examination total scores and the modified Webster Symptoms Score between non-HTB and before HTB and between non-HTB and after HTB. RESULTS: The improvement of MS after HTB was an independent risk factor for seasonal variation in MS (OR, 25.203; 95% CI, 10.951-58.006; p = .000). Patients with PD had significant improvements in the MDS-UPDRS part III motor examination total scores, especially in bradykinesia (p = .043), rigidity (p = .008), posture (p = .038), and rest tremor amplitude (p = .047). CONCLUSION: Seasonal variation in temperature and water temperature of HTB may affect MS in some patients with PD. Simple HTB could be recommended as physiotherapy for patients with PD who report temperature-sensitive MS.


Asunto(s)
Enfermedad de Parkinson , Salicilatos , Humanos , Estudios Transversales , Enfermedad de Parkinson/tratamiento farmacológico , Proyectos Piloto , Calidad de Vida , Temperatura
17.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698063

RESUMEN

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Asunto(s)
Flavanonas , Leucemia Monocítica Aguda , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Flavanonas/farmacología , Humanos , Leucemia Monocítica Aguda/tratamiento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células THP-1 , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
18.
Burns Trauma ; 12: tkae013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957661

RESUMEN

The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.

19.
Food Chem ; 451: 139469, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703727

RESUMEN

Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.


Asunto(s)
Antioxidantes , Euphausiacea , Fosfolípidos , Euphausiacea/química , Animales , Fosfolípidos/química , Antioxidantes/química , Antioxidantes/farmacología , Coloides/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regiones Antárticas , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/farmacología
20.
Int J Biol Macromol ; 276(Pt 2): 133980, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032901

RESUMEN

N-acetyl-oligosaccharides exhibit antioxidant and antibacterial activities. However, the low catalytic efficiency of chitinase on crystalline chitin hinders the eco-friendly production of N-acetyl-oligosaccharides. A marine-derived chitinase-producing strain Chitiniphilus eburneus YS-30 was screened in this study. The genome of C. eburneus YS-30 spans 4,522,240 bp, with a G + C content of 63.96 % and 4244 coding genes. Among the chitinases secreted by C. eburneus YS-30, Ce0303 showed the highest content at 19.10 %, with a molecular weight of 73.5 kDa. Recombinant Ce0303 exhibited optimal activity at 50 °C and pH 5.0, maintaining stability across pH 4.0-10.0. Ce0303 demonstrated strict substrate specificity, with a specific activity toward colloidal chitin of 6.41 U mg-1, Km of 2.34 mg mL-1, and kcat of 3.27 s-1. The specific activity of Ce0303 toward α-chitin was 18.87 % of its activity on colloidal chitin. Ce0303 displayed both exo- and endo-hydrolytic properties, primarily producing (GlcNAc)1-3 from colloidal chitin. The structure of Ce0303 includes one catalytic domain and two chitin-binding domains. Docking results revealed that the GlcNAc at -1 subsite formed two hydrogen bonds with conserved Trp380. The hydrolytic properties of Ce0303 will provide technical support for the comprehensive utilization of crustacean raw materials.


Asunto(s)
Quitina , Quitinasas , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo , Hidrólisis , Especificidad por Sustrato , Quitina/química , Quitina/metabolismo , Concentración de Iones de Hidrógeno , Organismos Acuáticos/enzimología , Filogenia , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Expresión Génica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Estabilidad de Enzimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA