Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Immunity ; 57(8): 1893-1907.e6, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39096910

RESUMEN

Naive CD4+ T cells in specific pathogen-free (SPF) mice are characterized by transcriptional heterogeneity and subpopulations distinguished by the expression of quiescence, the extracellular matrix (ECM) and cytoskeleton, type I interferon (IFN-I) response, memory-like, and T cell receptor (TCR) activation genes. We demonstrate that this constitutive heterogeneity, including the presence of the IFN-I response cluster, is commensal independent insofar as being identical in germ-free and SPF mice. By contrast, Nippostrongylus brasiliensis infection altered this constitutive heterogeneity. Naive T cell-intrinsic transcriptional changes acquired during helminth infection correlated with and accounted for decreased immunization response to an unrelated antigen. These compositional and functional changes were dependent variables of helminth infection, as they disappeared at the established time point of its clearance in mice. Collectively, our results indicate that the naive T cell pool is subject to dynamic transcriptional changes in response to certain environmental cues, which in turn permutes the magnitude of the immune response.


Asunto(s)
Linfocitos T CD4-Positivos , Nippostrongylus , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Nippostrongylus/inmunología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Organismos Libres de Patógenos Específicos , Transcripción Genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Helmintiasis/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Ratones Endogámicos C57BL , Activación de Linfocitos/inmunología
2.
Mol Psychiatry ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724566

RESUMEN

Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.

3.
J Proteome Res ; 23(4): 1221-1231, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38507900

RESUMEN

Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.


Asunto(s)
Proteínas , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Proteínas/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/métodos , Encéfalo , Proteoma/análisis
4.
Small ; 20(24): e2309130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247181

RESUMEN

Various physical and chemical reaction processes occur in non-aqueous liquid systems, particularly in oil phase systems. Therefore, achieving efficient, accurate, controllable, and cost-effective movement and transfer of substances in the oil phase is crucial. Liquid-phase photothermal actuators (LPAs) are commonly used for material transport in liquid-phase systems due to their remote operability and precise control. However, existing LPAs typically rely on materials like hydrogels and flexible polymers, commonly unsuitable for non-aqueous liquids. Herein, a 3D porous poly(vinylidene fluoride) (PVDF)/Ti3C2Tx actuator is developed using a solvent displacement method. It demonstrates directional movement and controlled material transport in non-aqueous liquid systems. When subject to infrared light irradiation (2.0 W cm-2), the actuator achieves motion velocities of 7.3 and 6 mm s-1 vertically and horizontally, respectively. The actuator's controllable motion capability is primarily attributed to the foam's oil-wettable properties, 3D porous oil transport network, and the excellent photothermal conversion performance of Ti3C2Tx, facilitating thermal diffusion and the Marangoni effect. Apart from multidimensional directions, the actuator enables material delivery and obstacle avoidance by transporting and releasing target objects to a predetermined position. Hence, the developed controllable actuator offers a viable solution for effective motion control and material handling in non-aqueous liquid environments.

5.
Small ; : e2401551, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109958

RESUMEN

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.

6.
Macromol Rapid Commun ; 45(10): e2400037, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38437164

RESUMEN

Gas sensors based on conducting polymers offer great potential for high-performance room temperature applications due to their cost-effectiveness, high-sensitivity, and operational advantage. However, their current performance is limited by the deficiency of control in conventional polymerization methods, leading to poor crystallinity and inconsistent material properties. Here, the quasi-liquid layer (QLL) on the ice surface acts as a self-regulating nano-reactor for precise control of thermodynamics and kinetics in the polymerization, resulting in a 7.62 nm thick two-dimensional (2D) polyaniline (PANI) film matching the QLL thickness. The ultra-thin film optimizes the exposure of active sites, enhancing the detection of analyte gases at low concentrations. It is validated by fabricating a chemiresistive gas sensor with the 2D PANI film, demonstrating stable room-temperature detection of ammonia down to 10 ppt in ambient air with an impressive 10% response. This achievement represents the highest sensitivity among sensors of this kind while maintaining excellent selectivity and repeatability. Moreover, the QLL-controlled polymerization strategy offers an alternative route for precise control of the polymerization process for conducting polymers, enabling the creation of advanced materials with enhanced properties.


Asunto(s)
Compuestos de Anilina , Polimerizacion , Polímeros , Compuestos de Anilina/química , Polímeros/química , Polímeros/síntesis química , Amoníaco/análisis , Amoníaco/química
7.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732827

RESUMEN

Arterial blood pressure (ABP) serves as a pivotal clinical metric in cardiovascular health assessments, with the precise forecasting of continuous blood pressure assuming a critical role in both preventing and treating cardiovascular diseases. This study proposes a novel continuous non-invasive blood pressure prediction model, DSRUnet, based on deep sparse residual U-net combined with improved SE skip connections, which aim to enhance the accuracy of using photoplethysmography (PPG) signals for continuous blood pressure prediction. The model first introduces a sparse residual connection approach for path contraction and expansion, facilitating richer information fusion and feature expansion to better capture subtle variations in the original PPG signals, thereby enhancing the network's representational capacity and predictive performance and mitigating potential degradation in the network performance. Furthermore, an enhanced SE-GRU module was embedded in the skip connections to model and weight global information using an attention mechanism, capturing the temporal features of the PPG pulse signals through GRU layers to improve the quality of the transferred feature information and reduce redundant feature learning. Finally, a deep supervision mechanism was incorporated into the decoder module to guide the lower-level network to learn effective feature representations, alleviating the problem of gradient vanishing and facilitating effective training of the network. The proposed DSRUnet model was trained and tested on the publicly available UCI-BP dataset, with the average absolute errors for predicting systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) being 3.36 ± 6.61 mmHg, 2.35 ± 4.54 mmHg, and 2.21 ± 4.36 mmHg, respectively, meeting the standards set by the Association for the Advancement of Medical Instrumentation (AAMI), and achieving Grade A according to the British Hypertension Society (BHS) Standard for SBP and DBP predictions. Through ablation experiments and comparisons with other state-of-the-art methods, the effectiveness of DSRUnet in blood pressure prediction tasks, particularly for SBP, which generally yields poor prediction results, was significantly higher. The experimental results demonstrate that the DSRUnet model can accurately utilize PPG signals for real-time continuous blood pressure prediction and obtain high-quality and high-precision blood pressure prediction waveforms. Due to its non-invasiveness, continuity, and clinical relevance, the model may have significant implications for clinical applications in hospitals and research on wearable devices in daily life.


Asunto(s)
Presión Sanguínea , Fotopletismografía , Humanos , Fotopletismografía/métodos , Presión Sanguínea/fisiología , Algoritmos , Procesamiento de Señales Asistido por Computador , Redes Neurales de la Computación , Determinación de la Presión Sanguínea/métodos
8.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473906

RESUMEN

Many metastatic cancers with poor prognoses correlate to downregulated CD82, but exceptions exist. Understanding the context of this correlation is essential to CD82 as a prognostic biomarker and therapeutic target. Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancer. We aimed to uncover the function and mechanism of CD82 in OSCC. We investigated CD82 in human OSCC cell lines, tissues, and healthy controls using the CRISPR-Cas9 gene knockout, transcriptomics, proteomics, etc. CD82 expression is elevated in CAL 27 cells. Knockout CD82 altered over 300 genes and proteins and inhibited cell migration. Furthermore, CD82 expression correlates with S100 proteins in CAL 27, CD82KO, SCC-25, and S-G cells and some OSCC tissues. The 37-50 kDa CD82 protein in CAL 27 cells is upregulated, glycosylated, and truncated. CD82 correlates with S100 proteins and may regulate their expression and cell migration. The truncated CD82 explains the invasive metastasis and poor outcome of the CAL 27 donor. OSCC with upregulated truncated CD82 and S100A7 may represent a distinct subtype with a poor prognosis. Differing alternatives from wild-type CD82 may elucidate the contradictory functions and pave the way for CD82 as a prognostic biomarker and therapeutic target.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/metabolismo , Proteína Kangai-1/metabolismo , Tetraspaninas/metabolismo , Proteínas S100 , Biomarcadores , Proteína A7 de Unión a Calcio de la Familia S100
9.
J Mater Sci Mater Electron ; 31(21): 18755-18762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38624445

RESUMEN

High temperature sensing sensitivity and luminescence intensity of phosphors are crucial factors for excellent optical temperature sensing performance. Based on material design, the pure phase and two-phase solid solutions were prepared by regulating the relative content of cations Ca2+ and La3+ in CaWO4-La2(WO4)3, respectively. The up-conversion luminescence (UCL) and optical temperature sensing performance of rare earth ions Er3+/Yb3+ co-doped CaWO4-La2(WO4)3 were studied. As guided by regulating cation composition through partial substituting Ca2+ ions by La3+ ions, the UCL intensity of two-phase solid solutions at 552 nm is much higher than that of pure phase material. The UCL intensity of 0.2La2(WO4)3-0.8CaWO4: 1%Er3+, 5%Yb3+ is as 33.5 times as that of CaWO4: 1%Er3+, 5%Yb3+ material. More importantly, the high temperature sensing sensitivity (0.01026 K-1) is achieved in a wider temperature range 83-683 K in optimal UCL material 0.2La2(WO4)3-0.8CaWO4: 1%Er3+, 5%Yb3+. It is suggested that material design theory can be used as a powerful tool to accelerate discovery of novel optical temperature sensing materials, with implications even for the design of other optoelectronic materials.

10.
Commun Biol ; 7(1): 493, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658803

RESUMEN

Deconvolution is an efficient approach for detecting cell-type-specific (cs) transcriptomic signals without cellular segmentation. However, this type of methods may require a reference profile from the same molecular source and tissue type. Here, we present a method to dissect bulk proteome by leveraging tissue-matched transcriptome and proteome without using a proteomics reference panel. Our method also selects the proteins contributing to the cellular heterogeneity shared between bulk transcriptome and proteome. The deconvoluted result enables downstream analyses such as cs-protein Quantitative Trait Loci (cspQTL) mapping. We benchmarked the performance of this multimodal deconvolution approach through CITE-seq pseudo bulk data, a simulation study, and the bulk multi-omics data from human brain normal tissues and breast cancer tumors, individually, showing robust and accurate cell abundance quantification across different datasets. This algorithm is implemented in a tool MICSQTL that also provides cspQTL and multi-omics integrative visualization, available at https://bioconductor.org/packages/MICSQTL .


Asunto(s)
Proteómica , Humanos , Proteómica/métodos , Sitios de Carácter Cuantitativo , Algoritmos , Transcriptoma , Proteoma , Femenino , Perfilación de la Expresión Génica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Encéfalo/metabolismo
11.
J Hazard Mater ; 469: 134078, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518699

RESUMEN

Recently, aquatic microcosms have attracted considerable attention because they can be used to simulate natural aquatic ecosystems. First, to evaluate the development of trends, hotspots, and national cooperation networks in the field, bibliometric analysis was performed based on 1841 articles on aquatic microcosm (1962-2022). The results of the bibliometric analysis can be categorized as follows: (1) Aquatic microcosm research can be summarized in two sections, with the first part focusing on the ecological processes and services of aquatic ecosystems, and the second focusing on the toxicity and degradation of pollutants. (2) The United States (number of publications: 541, proportion: 29.5%) and China (248, 13.5%) are the two most active countries. Second, to determine whether there is a difference between single-species and microcosm tests, that is, to perform different-tier assessments, the recommended aquatic safety thresholds in risk assessment [i.e., the community-level no effect concentration (NOECcommunity), hazardous concentrations for 5% of species (HC5) and predicted no effect concentration (PNEC)] were compared based on these tests. There was a significant difference between the NOECcommunity and HC5 (P < 0.05). Moreover, regression models predicting microcosm toxicity values were constructed to provide a reference for ecological systemic risk assessments based on aquatic microcosms.


Asunto(s)
Contaminantes Químicos del Agua , Estados Unidos , Contaminantes Químicos del Agua/análisis , Ecosistema , Agua Dulce , China , Medición de Riesgo , Organismos Acuáticos/metabolismo
12.
Environ Int ; 186: 108638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593689

RESUMEN

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Asunto(s)
Alopecia , Apoptosis , Microplásticos , Estrés Oxidativo , Poliestirenos , Piel , Uniones Estrechas , Alopecia/inducido químicamente , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Ratones , Poliestirenos/toxicidad , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Piel/efectos de los fármacos , Piel/patología , Folículo Piloso/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
J Hazard Mater ; 465: 133327, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141317

RESUMEN

The real biological effect is not generated by the total content of heavy metals (HMs), but rather by bioavailable content. A new bioavailability-based ecological risk assessment (BA-based ERA) framework was developed for deriving bioavailability-based soil quality criteria (BA-based SQC) and accurately assessing the ecological risk of soil HMs at a multi-regional scale in this study. Through the random forest (RF) models and BA-based ERA framework, the 217 BA-based SQC for HMs in 31 Chinese provinces were derived and the BA-based ERA was comprehensively assessed. This study found that bioavailable HMs extraction methods (BHEMs) and total HMs content play the predominant role in affecting HMs (As, Cd, Cr, Cu, Ni, Pb, and Zn) bioavailability by explaining 27.55-56.11% and 9.20-62.09% of the variation, respectively. The RF model had accurate and stable prediction ability for the bioavailability of soil HMs with the mean R2 and RMSE of 0.83 and 0.43 for the test set, respectively. The results of BA-based ERA showed that bioavailability could avoid the overestimation of ecological risks to some extent after reducing the uncertainty of soil differences. This study confirmed the feasibility of using bioavailability for ERA and will utilised to revise the soil environmental standards based on bioavailability for HMs.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Disponibilidad Biológica , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Medición de Riesgo , Metales Pesados/análisis , China
14.
J Control Release ; 369: 420-443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575075

RESUMEN

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Asunto(s)
Ácido Clorogénico , Hidrogeles , Macrófagos , Nanocompuestos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Hidrogeles/química , Nanocompuestos/química , Nanocompuestos/administración & dosificación , Células RAW 264.7 , Ratones , Macrófagos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Masculino , Fenotipo , Ratas Sprague-Dawley , Polilisina/química , Ácido Hialurónico/química
15.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659857

RESUMEN

Single-cell/nuclei RNA sequencing (sc/snRNA-Seq) is widely used for profiling cell-type gene expressions in biomedical research. An important but underappreciated issue is the quality of sc/snRNA-Seq data that would impact the reliability of downstream analyses. Here we evaluated the precision and accuracy in 18 sc/snRNA-Seq datasets. The precision was assessed on data from human brain studies with a total of 3,483,905 cells from 297 individuals, by utilizing technical replicates. The accuracy was evaluated with sample-matched scRNA-Seq and pooled-cell RNA-Seq data of cultured mononuclear phagocytes from four species. The results revealed low precision and accuracy at the single-cell level across all evaluated data. Cell number and RNA quality were highlighted as two key factors determining the expression precision, accuracy, and reproducibility of differential expression analysis in sc/snRNA-Seq. This study underscores the necessity of sequencing enough high-quality cells per cell type per individual, preferably in the hundreds, to mitigate noise in expression quantification.

16.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766269

RESUMEN

Ubiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their own ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express non-cleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.

17.
Adv Mater ; 36(30): e2313059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871341

RESUMEN

Artificial moiré superlattices created by stacking 2D crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices are reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, the effective manipulation of spin-orbit torque (SOT) is demonstrated using moiré superlattices in ferromagnetic devices comprised of twisted WS2/WS2 homobilayer (t-WS2) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, a substantial enhancement of up to 44.5% is observed in SOT conductivity at θ ≈ 8.3°. Furthermore, compared to the WS2 monolayer and untwisted WS2/WS2 bilayers, the moiré superlattices in t-WS2 enable a greater gate-voltage tunability of SOT conductivity. These results are related to the generation of the interfacial moiré magnetic field by the real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through the magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices.

18.
J Colloid Interface Sci ; 674: 902-912, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959736

RESUMEN

Developing bifunctional electrocatalysts based on non-precious metals for overall water splitting, while maintaining high catalytic activity and stability under high current densities, remains challenging. Herein, we successfully constructred trace iron-doped nickel-cobalt selenide with abundant CoSe2 (210)-Ni3Se4 (202) heterointerfaces via a simple one-step selenization reaction. The synthesized Fe-NiCoSex/NCFF (NCFF stands for nickel-cobalt-iron foam) exhibits outstanding hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity with low overpotentials of 328 mV for HER and 345 mV for OER at a high current density of 1000 mA cm-2, while maintaining stability for over 20 h. Additionally, the Fe-NiCoSex/NCFF exhibits the lowest Tafel slope values for both HER (33.7 mV dec-1) and OER (55.92 mV dec-1), indicating the fastest kinetics on its surface. The Fe-NiCoSex/NCFF features uniformly distributed micrometer-sized selenide particles with dense nanowires on their surface, providing a large reactive surface area and abundant active sites. Moreover, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses reveal that the catalyst is composed of nickel, cobalt, and iron, forming micrometer-sized particles with both crystalline and amorphous phases, thereby enhancing HER and OER performance under high current density. Density functional theory (DFT) calculations demonstrate that the heterostructure CoSe2 (210)-Ni3Se4 (202), with high electron density and suitable adsorption capacity for reaction intermediates, and low energy barriers for HER (-0.384 eV) and OER (ΔG1st: 0.243 eV, ΔG2nd: 0.376 eV), serves as an active center for both HER and OER.

19.
J Med Chem ; 67(8): 6738-6748, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526421

RESUMEN

The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.


Asunto(s)
Antineoplásicos , Ferroptosis , Isoquinolinas , Neoplasias de la Mama Triple Negativas , Ferroptosis/efectos de los fármacos , Humanos , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Femenino , Línea Celular Tumoral , Ferritinas/metabolismo , Autofagia/efectos de los fármacos , Ratones , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/síntesis química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Ratones Desnudos
20.
Front Oncol ; 14: 1336763, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903724

RESUMEN

Background: Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor with a high risk of mortality. Few studies with large samples of KHE have been reported. KHE may develop into the Kasabach-Merritt phenomenon (KMP), which is characterized by thrombocytopenia and consumptive coagulopathy. The features of severe symptomatic anemia and life-threatening low platelets make the management of KHE associated with KMP challenging. Objective: The aim of this study was to examine the clinical characteristics of patients with KHE and discuss the treatment experience for different risk groups of KHE. Methods: Through a retrospective review of 70 patients diagnosed with KHE between 2017 and 2022 in our center, we classify lesions into three clinicopathological stages based on the tumor involving depth, and divided the severity of KHE into three levels by estimating clinicopathological stages and severity of thrombocytopenia. Treatments of different severity groups were estimated with sufficient data. Results: In our cohort, 27% were neonates, and KHE lesion occurred at birth in 84% of patients. There was a slight male predominance (32 girls and 38 boys). Common clinical characteristics included associated coagulation disorder (100%), locally aggressive cutaneous blue-purple mass (89%), thrombocytopenia (78%), and local pain or joint dysfunction (20%). The lower extremities were the dominant location (35%), followed by the trunk (29%), the maxillofacial region and neck (24%), and the upper extremities (10%). Of the total cohort, 78% developed KMP; the median age at which thrombocytopenia occurred was 27.8 days. The median platelet count of patients who were associated with KMP was 24,000/µL in our cohort. Ninety-two percent of patients were given surgery treatment and 89% of these patients were given high-dose methylprednisolone (5-6 mg/kg daily) before surgery. In 55 patients with KMP, 36% were sensitive to high-dose corticosteroid therapy. Patients from the low-risk group (eight cases) underwent operation, all of whom recovered without recurrence after a maximum follow-up of 5 years. Out of 26 patients from the high-risk group, 25 underwent surgery treatment, with 1 case undergoing secondary surgery after recurrence and 1 case taking sirolimus. Out of 36 cases from the extremely high-risk group, 32 underwent surgery (including 2 cases who underwent external carotid artery ligation and catheterization), 3 of whom underwent secondary operation after recurrence, and the remaining 4 cases took medicine. The mean length of having sirolimus was 21 months; two cases stopped taking sirolimus due to severe pneumonia. Two cases died at 1 and 3 months after discharge. Conclusions: Our study describes the largest assessment of high-risk patients with KHE who have undergone an operation to date, with 5 years of follow-up to track recovery, which provides invaluable knowledge for the future treatment of patients with KHE and KMP from different risk groups: Early surgical intervention may be the most definitive treatment option for most patients with KHE; multimodality treatment is the best choice for the extremely high-risk group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA