Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.391
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8009): 910-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570680

RESUMEN

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Asunto(s)
Canales de Calcio , Microscopía por Crioelectrón , Activación del Canal Iónico , Mecanotransducción Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Lípidos/química , Liposomas/metabolismo , Liposomas/química , Modelos Moleculares , Nanoestructuras/química
2.
EMBO J ; 40(15): e107497, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34169534

RESUMEN

In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Dominios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
3.
J Virol ; 98(1): e0116623, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054704

RESUMEN

Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.


Asunto(s)
Virus de la Influenza A , Proteínas no Estructurales Virales , Humanos , Sustitución de Aminoácidos , Aminoácidos/genética , ARN Polimerasas Dirigidas por ADN/genética , Virus de la Influenza A/genética , Gripe Humana/genética , Proteínas Virales/genética , Replicación Viral , Proteínas no Estructurales Virales/metabolismo
4.
J Immunol ; 210(6): 786-794, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715497

RESUMEN

Mitochondrial antiviral signaling protein (MAVS) is a key adaptor in cellular innate immunity. Ubiquitination plays an important role in regulating MAVS-mediated innate immune responses; however, the molecular mechanisms underlying ubiquitination of MAVS have not been fully elucidated. In this study, we first identified the mitochondria-resident E3 ligase duck membrane-associated RING-CH 8 (duMARCH8) in ducks as a negative regulator of duck MAVS (duMAVS). Overexpression of duMARCH8 impaired the duMAVS-mediated signaling pathway, whereas knockdown of duMARCH8 resulted in the opposite effects. The suppression was due to duMARCH8 interacting with duMAVS and degrading it in a proteasome-dependent manner. We further found that duMARCH8 interacted with the 176-619 regions of duMAVS. Moreover, duMARCH8 catalyzed the K29-linked polyubiquitination of duMAVS at Lys 398 to inhibit the MAVS-mediated signaling pathway. Collectively, our findings reveal a new strategy involving MARCH8 that targets the retinoic acid-inducible gene-I-like receptor signaling pathway to regulate innate immune responses in ducks.


Asunto(s)
Patos , Transducción de Señal , Animales , Proteínas Portadoras/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Mitocondriales/metabolismo
5.
J Immunol ; 210(12): 2001-2015, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37154707

RESUMEN

Abundant evidence demonstrates that mechanical stress could induce an inflammatory response in periodontal tissue, but the precise mechanism remains unclear. In the past few years, periodontal ligament cells (PDLCs), as the most force-sensitive cells, have been investigated in depth as local immune cells, associated with activation of inflammasomes and secretion of inflammatory cytokines in response to mechanical stimuli. However, this study innovatively inspected the effect of PDLCs on the other immune cells after stretch loading to reveal the detailed mechanism by which mechanical stimuli initiate immunoreaction in periodontium. In the present study, we found that cyclic stretch could stimulate human PDLCs to secret exosomes and that these exosomes could further induce the increase of phagocytic cells in the periodontium in Sprague-Dawley rats and the M1 polarization of the cultured macrophages (including the mouse macrophage cell line RAW264.7 and the bone marrow-derived macrophages from C57BL/6 mice). Furthermore, the exosomal miR-9-5p was detected to be overexpressed after mechanical stimuli in both in vivo and in vitro experiments and could trigger M1 polarization via the SIRT1/NF-κB signaling pathway in the cultured macrophages. In summary, this study revealed that PDLCs could transmit the mechanobiological signals to immune cells by releasing exosomes and simultaneously enhance periodontal inflammation through the miR-9-5p/SIRT1/NF-κB pathway. We hope that our research can improve understanding of force-related periodontal inflammatory diseases and lead to new targets for treatment.

6.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38102949

RESUMEN

Dual-process theories propose that recognition memory involves recollection and familiarity; however, the impact of motor expertise on memory recognition, especially the interplay between familiarity and recollection, is relatively unexplored. This functional magnetic resonance imaging study used videos of a dancer performing International Latin Dance Styles as stimuli to investigate memory recognition in professional dancers and matched controls. Participants observed and then reported whether they recognized dance actions, recording the level of confidence in their recollections, whereas blood-oxygen-level-dependent signals measured encoding and recognition processes. Professional dancers showed higher accuracy and hit rates for high-confidence judgments, whereas matched controls exhibited the opposite trend for low-confidence judgments. The right putamen and precentral gyrus showed group-based moderation effects, especially for high-confidence (vs. low-confidence) action recognition in professional dancers. During action recognition, the right superior temporal gyrus and insula showed increased activation for accurate recognition and high-confidence retrieval, particularly in matched controls. These findings highlighting enhanced action memory of professional dancers-evident in their heightened recognition confidence-not only supports the dual-processing model but also underscores the crucial role of expertise-driven familiarity in bolstering successful recollection. Additionally, they emphasize the involvement of the action observation network and frontal brain regions in facilitating detailed encoding linked to intention processing.


Asunto(s)
Imagen por Resonancia Magnética , Reconocimiento en Psicología , Humanos , Reconocimiento en Psicología/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Lóbulo Temporal , Recuerdo Mental/fisiología
7.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38725291

RESUMEN

A widely used psychotherapeutic treatment for post-traumatic stress disorder (PTSD) involves performing bilateral eye movement (EM) during trauma memory retrieval. However, how this treatment-described as eye movement desensitization and reprocessing (EMDR)-alleviates trauma-related symptoms is unclear. While conventional theories suggest that bilateral EM interferes with concurrently retrieved trauma memories by taxing the limited working memory resources, here, we propose that bilateral EM actually facilitates information processing. In two EEG experiments, we replicated the bilateral EM procedure of EMDR, having participants engaging in continuous bilateral EM or receiving bilateral sensory stimulation (BS) as a control while retrieving short- or long-term memory. During EM or BS, we presented bystander images or memory cues to probe neural representations of perceptual and memory information. Multivariate pattern analysis of the EEG signals revealed that bilateral EM enhanced neural representations of simultaneously processed perceptual and memory information. This enhancement was accompanied by heightened visual responses and increased neural excitability in the occipital region. Furthermore, bilateral EM increased information transmission from the occipital to the frontoparietal region, indicating facilitated information transition from low-level perceptual representation to high-level memory representation. These findings argue for theories that emphasize information facilitation rather than disruption in the EMDR treatment.


Asunto(s)
Electroencefalografía , Desensibilización y Reprocesamiento del Movimiento Ocular , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Desensibilización y Reprocesamiento del Movimiento Ocular/métodos , Movimientos Oculares/fisiología , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia , Trastornos por Estrés Postraumático/psicología , Percepción Visual/fisiología , Memoria/fisiología , Encéfalo/fisiología , Estimulación Luminosa/métodos , Memoria a Corto Plazo/fisiología
8.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741271

RESUMEN

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Asunto(s)
Infartos del Tronco Encefálico , Cerebelo , Imagen por Resonancia Magnética , Vías Nerviosas , Puente , Humanos , Masculino , Femenino , Persona de Mediana Edad , Cerebelo/fisiopatología , Cerebelo/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Puente/diagnóstico por imagen , Puente/fisiopatología , Infartos del Tronco Encefálico/fisiopatología , Infartos del Tronco Encefálico/diagnóstico por imagen , Anciano , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
9.
Genomics ; 116(2): 110813, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402914

RESUMEN

Azoospermia and asthenospermia are common manifestations of male infertility, but it needs further studies to understand the intrinsic regulation mechanism. As a popular model organism, zebrafish is often used to assess reproductive complications. In this study, by analyzing miRNA transcriptome of the mature triploid zebrafish testis afflicted with spermatogenic dysfunctions, leading to the identification of 36 miRNAs that are differentially expressed in comparison with diploid, which are predicted to target 2737 genes. Subsequent functional annotation of these genes pinpointed two miRNAs might association with spermatogenesis. Inhibitory experiments showed that NC_007115.7.7_998413 inhibited conducts a substantial decline in sperm density, and conducted lower embryo fertilization rate than control. And putative target genes qRT-PCR evaluation showed that spata2 was significant down-regulate upon inhibited NC_007115.7.7_998413. In summary, this research positions newly identified miRNA NC_007115.7.998413 as a regulatory factor in male zebrafish reproductive development, enhancing our comprehension of the molecular regulated pathways involved in spermatogenesis.


Asunto(s)
Infertilidad Masculina , MicroARNs , Humanos , Animales , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética , Semen/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Testículo/metabolismo , Espermatogénesis/genética
10.
J Neurosci ; 43(8): 1405-1413, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36690451

RESUMEN

Rapid detection of a threat or its symbol (e.g., fearful face), whether visible or invisible, is critical for human survival. This function is suggested to be enabled by a subcortical pathway to the amygdala independent of the cortex. However, conclusive electrophysiological evidence in humans is scarce. Here, we explored whether the amygdala can rapidly encode invisible fearful faces. We recorded intracranial electroencephalogram (iEEG) responses in the human (both sexes) amygdala to faces with fearful, happy, and neutral emotions rendered invisible by backward masking. We found that a short-latency intracranial event-related potential (iERP) in the amygdala, beginning 88 ms poststimulus onset, was preferentially evoked by invisible fearful faces relative to invisible happy or neutral faces. The rapid iERP exhibited selectivity to the low spatial frequency (LSF) component of the fearful faces. Time-frequency iEEG analyses further identified a rapid amygdala response preferentially for LSF fearful faces at the low gamma frequency band, beginning 45 ms poststimulus onset. In contrast, these rapid responses to invisible fearful faces were absent in cortical regions, including early visual areas, the fusiform gyrus, and the parahippocampal gyrus. These findings provide direct evidence for the existence of a subcortical pathway specific for rapid fear detection in the amygdala and demonstrate that the subcortical pathway can function without conscious awareness and under minimal influence from cortical areas.SIGNIFICANCE STATEMENT Automatic detection of biologically relevant stimuli, such as threats or dangers, has remarkable survival value. Here, we provide direct intracranial electrophysiological evidence that the human amygdala preferentially responds to fearful faces at a rapid speed, despite the faces being invisible. This rapid, fear-selective response is restricted to faces containing low spatial frequency information transmitted by magnocellular neurons and does not appear in cortical regions. These results support the existence of a rapid subcortical pathway independent of cortical pathways to the human amygdala.


Asunto(s)
Miedo , Imagen por Resonancia Magnética , Masculino , Femenino , Humanos , Miedo/fisiología , Emociones/fisiología , Felicidad , Amígdala del Cerebelo/fisiología , Expresión Facial
11.
Carcinogenesis ; 45(6): 387-398, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38693810

RESUMEN

Effective diagnosis and understanding of the mechanism of intrapulmonary metastasis (IM) from multiple primary lung cancers (MPLC) aid clinical management. However, the actual detection panels used in the clinic are variable. Current research on tumor microenvironment (TME) of MPLC and IM is insufficient. Therefore, additional investigation into the differential diagnosis and discrepancies in TME between two conditions is crucial. Two hundred and fourteen non-small cell lung cancer patients with multiple tumors were enrolled and 507 samples were subjected to DNA sequencing (NGS 10). Then, DNA and RNA sequencing (master panel) were performed on the specimens from 32 patients, the TME profiles between tumors within each patient and across patients and the differentially expressed genes were compared. Four patients were regrouped with NGS 10 results. Master panel resolved the classifications of six undetermined patients. The TME in MPLC exhibited a high degree of infiltration by natural killer (NK) cells, CD56dim NK cells, endothelial cells, etc., P < 0.05. Conversely, B cells, activated B cells, regulatory cells, immature dendritic cells, etc., P < 0.001, were heavily infiltrated in the IM. NECTIN4 and LILRB4 mRNA were downregulated in the MPLC (P < 0.0001). Additionally, NECTIN4 (P < 0.05) and LILRB4 were linked to improved disease-free survival in the MPLC. In conclusion, IM is screened from MPLC by pathology joint NGS 10 detections, followed by a large NGS panel for indistinguishable patients. A superior prognosis of MPLC may be associated with an immune-activating TME and the downregulation of NECTIN4 and LILRB4 considered as potential drug therapeutic targets.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Femenino , Microambiente Tumoral/genética , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Anciano , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Pronóstico , Genómica/métodos , Perfilación de la Expresión Génica , Nectinas/genética , Células Asesinas Naturales/inmunología
12.
Hum Mol Genet ; 31(15): 2483-2497, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35157032

RESUMEN

Cervical cancer is among the leading causes of cancer-related death in females worldwide. Infection by human papillomavirus (HPV) is an established risk factor for cancer development. However, genetic factors contributing to disease risk remain largely unknown. We report on a genome-wide association study (GWAS) on 375 German cervical cancer patients and 866 healthy controls, followed by a replication study comprising 658 patients with invasive cervical cancer, 1361 with cervical dysplasia and 841 healthy controls. Functional validation was performed for the top GWAS variant on chromosome 14q12 (rs225902, close to PRKD1). After bioinformatic annotation and in silico predictions, we performed transcript analysis in a cervical tissue series of 317 samples and demonstrate rs225902 as an expression quantitative trait locus (eQTL) for FOXG1 and two tightly co-regulated long non-coding RNAs at this genomic region, CTD-2251F13 (lnc-PRKD1-1) and CTD-2503I6 (lnc-FOXG1-6). We also show allele-specific effects of the 14q12 variants via luciferase assays. We propose a combined effect of genotype, HPV status and gene expression at this locus on cervical cancer progression. Taken together, this work uncovers a potential candidate locus with regulatory functions and contributes to the understanding of genetic susceptibility to cervical cancer.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Estudios de Seguimiento , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas del Tejido Nervioso/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias del Cuello Uterino/genética
13.
J Virol ; 97(5): e0033723, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37166301

RESUMEN

In the influenza virus life cycle, viral RNA (vRNA) transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the viral RNA-dependent RNA polymerase in the host cell nucleus, are delicately controlled, and the levels of the three viral RNA species display very distinct synthesis dynamics. However, the underlying mechanisms remain elusive. Here, we demonstrate that in the context of virus infection with cycloheximide treatment, the expression of viral nonstructural protein 1 (NS1) can stimulate primary transcription, while the expression of viral NS2 inhibits primary transcription. It is known that the NS1 and NS2 proteins are expressed with different timings from unspliced and spliced mRNAs of the viral NS segment. We then simulated the synthesis dynamics of NS1 and NS2 proteins during infection by dose-dependent transfection experiments in ribonucleoprotein (RNP) reconstitution systems. We found that the early-expressed NS1 protein can stimulate viral mRNA synthesis, while the late-expressed NS2 protein can inhibit mRNA synthesis but can promote vRNA synthesis in a manner highly consistent with the dynamic changes in mRNA/vRNA in the virus life cycle. Furthermore, we observed that the coexistence of sufficient NS1 and NS2, close to the status of the NS1 and NS2 levels in the late stage of infection, could boost vRNA synthesis to the highest efficiency. We also identified key functional amino acids of NS1 and NS2 involved in these regulations. Together, we propose that the stoichiometric changes in the viral NS1 and NS2 proteins during infection are responsible for the fine regulation of viral RNA transcription and replication. IMPORTANCE In order to ensure efficient multiplication, influenza virus transcribes and replicates its segmented, negative-sense viral RNA genome in highly ordered dynamics across the virus life cycle. How the virus achieves such regulation remains poorly understood. Here, we demonstrate that the stoichiometric changes in the viral NS1 and NS2 proteins during infection could be responsible for the fine regulation of the distinct dynamics of viral RNA transcription and replication. We thus propose a fundamental mechanism exploited by influenza virus to dynamically regulate the synthesis of its viral RNA through the delicate control of viral NS1 and NS2 protein expression.


Asunto(s)
Virus de la Influenza A , Orthomyxoviridae , Proteínas no Estructurales Virales , Virus de la Influenza A/metabolismo , Orthomyxoviridae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
14.
J Transl Med ; 22(1): 193, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388430

RESUMEN

Aberrant upregulation of the ubiquitin-specific protease 14 (USP14) has been found in some malignant tumors, including oral squamous cell carcinoma (OSCC). In this study, we further demonstrated that aberrantly overexpressed USP14 was also closely related to adverse clinicopathological features and poor prognosis in patients with OSCC, so we hypothesized that USP14 might act as a tumor-promoting factor during the progression of OSCC. Notably, we originally proved that USP14 is a deubiquitinating enzyme for phosphofructokinase-1 liver type (PFKL), a key rate-limiting enzyme involved in the glycolytic pathway. USP14 interacts with PFKL and enhances its stability through deubiquitination in OSCC cells, which in turn enhances PFKL-mediated glycolytic metabolism and ultimately promote cellular proliferation, migration, and tumorigenesis. In this work, we have also demonstrated for the first time that USP14 is a critical regulator of glycolysis in OSCC and verified a novel mechanism whereby it is involved in tumor metastasis and growth. Collectively, our findings provide novel insights into the tumor-promoting role of USP14 and establish mechanistic foundations for USP14-targeting therapies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/genética , Fosfofructoquinasa-1 , Hígado , Glucólisis , Proliferación Celular , Proteasas Ubiquitina-Específicas , Línea Celular Tumoral , Ubiquitina Tiolesterasa
15.
Opt Express ; 32(5): 8059-8068, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439472

RESUMEN

A novel technique referred to as optical side leakage radiometry is proposed and experimentally demonstrated for non-destructive and distributed characterization of anti-resonant hollow-core optical fibers with high spatial resolution. Through in-depth analysis of the leakage light collection, we discover a unique polarization dependence, which is validated by our experiment. By leveraging this effect and employing Fourier filtering, this method enables accurate quantification of propagation attenuations for fundamental and higher order modes (with the uncertainty of <1 dB/km), identification of localized defects (with the resolution of ∼5 cm), and measurement of ultra-low spectral phase birefringence (at the level of 10-7) in two in-house-fabricated nested antiresonant nodeless hollow-core fibers. Such a fiber characterization approach, boasting unprecedently high accuracy and a potentially wide dynamic range, holds the potential to become an indispensable diagnosis tool for monitoring and assisting the manufacture of high-quality anti-resonant hollow-core fiber.

16.
Opt Express ; 32(9): 15156-15165, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859174

RESUMEN

Fiber side-pump couplers can enhance the output power of fiber laser due to their dependable and efficient operation and impressive power handling capability. We developed a tellurite fiber side-pump coupler by twisting and fusing a tapered pump fiber onto a target fiber. The effect of twisting parameters on coupling efficiency was comprehensively investigated through theoretical simulations and experiments. Experimental results exhibited an impressive coupling efficiency of 76.5% and a root mean square stability of 0.086% and 0.091% before and after one month, respectively, driven by an incident pump power of up to 4.2 W.

17.
Opt Express ; 32(3): 4093-4101, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297617

RESUMEN

Antiresonant hollow-core fiber (AR-HCF) exhibits unprecedented optical performance in low transmission attenuation, broad transmission bandwidth, and single spatial mode quality. However, due to its lower numerical aperture, when utilizing the Fiber-Enhanced Raman Spectroscopy (FERS) principle for gas detection, the efficiency of AR-HCF in collecting Raman signals per unit length is significantly lower than that of hollow-core photonic crystal fiber. Nonetheless, AR-HCF effectively suppresses higher-order modes and offers bandwidth in hundreds of nanometers. By increasing the length of AR-HCF, its advantages can be effectively harnessed, leading to a considerable enhancement in the system's ability for low-concentration gas detection. We combine the nodeless antiresonant hollow-core fiber and Raman spectroscopy for enhanced Raman gas sensing in a forward scattering measurement configuration to investigate the attenuation behavior of the silica background signals. The silica background attenuation behavior enables the low baseline of the gas Raman spectroscopy and extends the integration time of the system. In addition, a convenient spatial filtering method is investigated. A multimode fiber with a suitable core diameter was employed to transmit the signal so that the fiber end face plays the role of pinhole, thus filtering the silica signal and reducing the baseline. The natural isotopes 12C16O2, 13C16O2, and 12C18O16O in ambient air can be observed using a 5-meter-long AR-HCF at 1 bar with a laser output power of 1.8 W and an integration time of 300 seconds. Limits of detection have been determined to be 0.5 ppm for 13C16O2 and 1.2 ppm for 12C16O2, which shows that the FERS with AR-HCF has remarkable potential for isotopes and multigas sensing.

18.
Opt Lett ; 49(9): 2509-2512, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691756

RESUMEN

A high-efficiency and broadband tunable chalcogenide fiber Raman laser with the Fabry-Perot (F-P) cavity formed by the Fresnel reflection was established. A maximum average power slope efficiency of around 43% and a maximum output peak power of about 2.9 W at 2148 nm were demonstrated by using a 2 µm nanosecond pump source. The laser shows a broadened pulse width of 674 ns and a broadband tunability of the central wavelength from 2100 to 2186 nm. The Raman Fabry-Perot cavity constituted by the Fresnel reflection from chalcogenide fiber endfaces can operate at any wavelength without the aid of any additional optical feedback element. This will facilitate the realization of fiber lasers with excellent performance and compact system, especially in the mid-infrared region.

19.
Cancer Cell Int ; 24(1): 162, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724996

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of most prevalent cancers worldwide, especially in China. Lacking in depth mechanism study, effective targets and therapeutics are desperately needed in the clinic. RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. Bioinformatics analysis revealed that IGF2BPs were highly expressed in ESCC tissues and at least participated in the regulation of cell proliferation of ESCC cells. Biological researches demonstrated that IGF2BP2 promoted the cell proliferation, migration and invasion of ESCC KYSE30 and KYSE450 cells. IGF2BP2 could bind to EIF4A1 mRNA by recognition of m6A sites and enhanced translation of EIF4A1. IGF2BPs, as m6A reader, IGF2BPs were oncogenic genes in ESCC by regulating the expression of EIF4A1 through m6A sites. IGF2BP2, EIF4A1 and their targets could serve as potential biomarkers and therapeutic targets for ESCC, offering promising novel approaches for the diagnosis and treatment of ESCC.

20.
Cancer Cell Int ; 24(1): 100, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461238

RESUMEN

Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA