Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551271

RESUMEN

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Asunto(s)
ADN/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/química , Humanos , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Simulación de Dinámica Molecular , Proteínas Nucleares/química , Proteínas Nucleares/clasificación , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Pan troglodytes , Filogenia , Polimorfismo de Nucleótido Simple , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
2.
Nature ; 627(8003): 313-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480964

RESUMEN

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Asunto(s)
Diseño de Equipo , Piel , Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Humanos , Silicio , Nanotubos de Carbono , Tacto
3.
Nature ; 603(7902): 624-630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322250

RESUMEN

Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.

4.
Plant Cell ; 36(4): 899-918, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38142228

RESUMEN

Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Salinidad , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Proc Natl Acad Sci U S A ; 121(9): e2310993121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386707

RESUMEN

How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.


Asunto(s)
Mecanotransducción Celular , Pez Cebra , Animales , Microvasos , Endotelio Vascular , Venas
6.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38942594

RESUMEN

Accurate understanding of the biological functions of enzymes is vital for various tasks in both pathologies and industrial biotechnology. However, the existing methods are usually not fast enough and lack explanations on the prediction results, which severely limits their real-world applications. Following our previous work, DEEPre, we propose a new interpretable and fast version (ifDEEPre) by designing novel self-guided attention and incorporating biological knowledge learned via large protein language models to accurately predict the commission numbers of enzymes and confirm their functions. Novel self-guided attention is designed to optimize the unique contributions of representations, automatically detecting key protein motifs to provide meaningful interpretations. Representations learned from raw protein sequences are strictly screened to improve the running speed of the framework, 50 times faster than DEEPre while requiring 12.89 times smaller storage space. Large language modules are incorporated to learn physical properties from hundreds of millions of proteins, extending biological knowledge of the whole network. Extensive experiments indicate that ifDEEPre outperforms all the current methods, achieving more than 14.22% larger F1-score on the NEW dataset. Furthermore, the trained ifDEEPre models accurately capture multi-level protein biological patterns and infer evolutionary trends of enzymes by taking only raw sequences without label information. Meanwhile, ifDEEPre predicts the evolutionary relationships between different yeast sub-species, which are highly consistent with the ground truth. Case studies indicate that ifDEEPre can detect key amino acid motifs, which have important implications for designing novel enzymes. A web server running ifDEEPre is available at https://proj.cse.cuhk.edu.hk/aihlab/ifdeepre/ to provide convenient services to the public. Meanwhile, ifDEEPre is freely available on GitHub at https://github.com/ml4bio/ifDEEPre/.


Asunto(s)
Aprendizaje Profundo , Enzimas , Enzimas/química , Enzimas/metabolismo , Biología Computacional/métodos , Programas Informáticos , Proteínas/química , Proteínas/metabolismo , Bases de Datos de Proteínas , Algoritmos
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555470

RESUMEN

Single-cell RNA sequencing has achieved massive success in biological research fields. Discovering novel cell types from single-cell transcriptomics has been demonstrated to be essential in the field of biomedicine, yet is time-consuming and needs prior knowledge. With the unprecedented boom in cell atlases, auto-annotation tools have become more prevalent due to their speed, accuracy and user-friendly features. However, existing tools have mostly focused on general cell-type annotation and have not adequately addressed the challenge of discovering novel rare cell types. In this work, we introduce scNovel, a powerful deep learning-based neural network that specifically focuses on novel rare cell discovery. By testing our model on diverse datasets with different scales, protocols and degrees of imbalance, we demonstrate that scNovel significantly outperforms previous state-of-the-art novel cell detection models, reaching the most AUROC performance(the only one method whose averaged AUROC results are above 94%, up to 16.26% more comparing to the second-best method). We validate scNovel's performance on a million-scale dataset to illustrate the scalability of scNovel further. Applying scNovel on a clinical COVID-19 dataset, three potential novel subtypes of Macrophages are identified, where the COVID-related differential genes are also detected to have consistent expression patterns through deeper analysis. We believe that our proposed pipeline will be an important tool for high-throughput clinical data in a wide range of applications.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Perfilación de la Expresión Génica , Macrófagos , Redes Neurales de la Computación
8.
Plant Physiol ; 195(2): 1053-1068, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38245840

RESUMEN

The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to P. syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against P. syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Homeostasis , Ácidos Indolacéticos , Enfermedades de las Plantas , Proteínas de Plantas , Pseudomonas syringae , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/inmunología , Ácidos Indolacéticos/metabolismo , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente
9.
FASEB J ; 38(13): e23727, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877845

RESUMEN

Oxidative stress is proposed as a regulatory element in various neurological disorders, which is involved in the progress of several neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidant drugs are widely used to alleviate neurodegenerative disorders. Astragalus membranaceus (Huangqi, AM) is a commonly used medicinal herb with a wide range of pharmacological effects. Here, the protective effect and mechanism of AM extract (AME) and its bioactive compounds against neurodegenerative disorders via alleviating oxidative stress were detected using adult Drosophila melanogaster. The drug safety was measured by development analysis; oxidative stress resistance ability was detected by survival rate under H2O2 environment; ROS level was detected by DHE staining and gstD1-GFP fluoresence assay; antioxidative abilitiy was represent by measuring antioxidant enzyme activity, antioxidative-related gene expression, and ATP and MFN2 levels. The neuroprotective effect was evaluated by lifespan and locomotion analysis in Aß42 transgenic and Pink1B9 mutants. AME dramatically increased the survival rates, improved the CAT activity, restored the decreased mRNA expressions of Sod1, Cat, and CncC under H2O2 stimulation, and ameliorated the neurobehavioral defects of the AD and PD. Thirteen small molecules in AM had antioxidant function, in which vanillic acid and daidzein had the most potent antioxidant effect. Vanillic acid and daidzein could increase the activities of SOD and CAT, GSH level, and the expressions of antioxidant genes. Vanillic acid could improve the levels of ATP and MFN2, and mRNA expressions of ND42 and SDHC to rescue mitochondrial dysfunction. Furthermore, vanillic acid ameliorated neurobehavioral defects of PD. Daidzein ameliorated neurobehavioral defect of Aß-induced AD mode. Taken together, AM plays a protective role in oxidative damage, thereby as a potential natural drug to treat neurodegenerative disorders.


Asunto(s)
Antioxidantes , Astragalus propinquus , Drosophila melanogaster , Enfermedades Neurodegenerativas , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Astragalus propinquus/química , Drosophila melanogaster/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Extractos Vegetales/farmacología , Animales Modificados Genéticamente , Medicamentos Herbarios Chinos/farmacología , Peróxido de Hidrógeno , Péptidos beta-Amiloides/metabolismo
11.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216525

RESUMEN

Observational studies have reported that osteoporosis is associated with cortical changes in the brain. However, the inherent limitations of observational studies pose challenges in eliminating confounding factors and establishing causal relationships. And previous observational studies have not reported changes in specific brain regions. By employing Mendelian randomization, we have been able to infer a causal relationship between osteoporosis and a reduction in the surficial area (SA) of the brain cortical. This effect is partially mediated by vascular calcification. We found that osteoporosis significantly decreased the SA of global brain cortical (ß = -1587.62 mm2, 95%CI: -2645.94 mm2 to -529.32 mm2, P = 0.003) as well as the paracentral gyrus without global weighted (ß = - 19.42 mm2, 95%CI: -28.90 mm2 to -9.95 mm2, P = 5.85 × 10-5). Furthermore, we estimated that 42.25% and 47.21% of the aforementioned effects are mediated through vascular calcification, respectively. Osteoporosis leads to a reduction in the SA of the brain cortical, suggesting the presence of the bone-brain axis. Vascular calcification plays a role in mediating this process to a certain extent. These findings establish a theoretical foundation for further investigations into the intricate interplay between bone, blood vessels, and the brain.


Asunto(s)
Osteoporosis , Calcificación Vascular , Humanos , Análisis de la Aleatorización Mendeliana , Encéfalo/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
12.
Nucleic Acids Res ; 51(19): 10309-10325, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37697430

RESUMEN

Krüppel-associated box zinc finger proteins (KZFPs) function as a defense mechanism to maintain the genome stability of higher vertebrates by regulating the transcriptional activities of transposable elements (TEs). While previous studies have characterized ZFP809 as responsible for binding and repressing ERVs containing a proline tRNA primer-binding site (PBS-Pro) in mice, comparable KZFPs have not been identified in humans yet. Here, we identified ZNF506 as a PBS-Pro-binding protein in humans, which functions as a transcriptional repressor of PBS-Pro-utilizing retroviruses by recruiting heterochromatic modifications. Although they have similar functions, the low protein similarities between ZNF506, ZFP809 and KZFPs of other species suggest their independent evolution against the invasion of PBS-Pro-utilizing retroviruses into their respective ancestor genomes after species divergence. We also explored the link between ZNF506 and leukemia. Our findings suggest that ZNF506 is a unique human KZFP that can bind to PBS-Pro, highlighting the diverse evolution of KZFPs in defending against retroviral invasions. Additionally, our study provides insights into the potential role of ZNF506 in leukemia, contributing to the expanding knowledge of KZFPs' crucial function in disease and genome stability.


Asunto(s)
Retrovirus Endógenos , Leucemia , Animales , Humanos , Ratones , Sitios de Unión , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Inestabilidad Genómica , Leucemia/genética , Proteínas Represoras/metabolismo
13.
Nucleic Acids Res ; 51(7): 3270-3287, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36864746

RESUMEN

Many prokaryotic viruses are temperate and their reactivation is tightly regulated. However, except for a few bacterial model systems, the regulatory circuits underlying the exit from lysogeny are poorly understood, especially in archaea. Here, we report a three-gene module which regulates the switch between lysogeny and replicative cycle in a haloarchaeal virus SNJ2 (family Pleolipoviridae). The SNJ2 orf4 encodes a winged helix-turn-helix DNA binding protein which maintains lysogeny through repressing the expression of the viral integrase gene intSNJ2. To switch to the induced state, two other SNJ2-encoded proteins, Orf7 and Orf8, are required. Orf8 is a homolog of cellular AAA+ ATPase Orc1/Cdc6, which is activated upon mitomycin C-induced DNA damage, possibly through posttranslational modification. Activated Orf8 initiates the expression of Orf7 which, in turn, antagonizes the function of Orf4, leading to the transcription of intSNJ2, thereby switching SNJ2 to the induced state. Comparative genomics analysis revealed that the SNJ2-like Orc1/Cdc6-centered three-gene module is common in haloarchaeal genomes, always present in the context of integrated proviruses. Collectively, our results uncover the first DNA damage signaling pathway encoded by a temperate archaeal virus and reveal an unexpected role of the widely distributed virus-encoded Orc1/Cdc6 homologs.


Asunto(s)
Lisogenia , Virus , Lisogenia/genética , Virus/genética , Provirus/genética , Virus ADN/genética , ADN Viral/genética , Daño del ADN , Transducción de Señal/genética
14.
Proc Natl Acad Sci U S A ; 119(11): e2119415119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259018

RESUMEN

SignificanceHosts often target the relatively conserved regions in rapidly mutating retroviruses to inhibit their replication. One of these regions is called a primer binding site (PBS), which has to be complementary to the host tRNA to initiate reverse transcription. By analyzing endogenous retroviral elements, we found that host cells use this sequence as a target in efforts to block the expression of viral elements. A specific type of zinc finger protein targets the PBS in a host genome, which not only inhibits the transcription of endogenous viruses but also inhibits the replication of exogenous retroviruses with the same PBS. Thus, our study sheds light on a strategy for searching for host restriction factors targeting retroviruses.


Asunto(s)
Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Represoras/metabolismo , Retroviridae/fisiología , Dedos de Zinc , Secuencia de Bases , Sitios de Unión , Mapeo Cromosómico , Retrovirus Endógenos , Estudio de Asociación del Genoma Completo , Humanos , Motivos de Nucleótidos , Retroviridae/clasificación , Transcripción Genética , Replicación Viral
15.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847360

RESUMEN

In laser-based additive manufacturing (AM), porosity and unmelted metal powder are typically considered undesirable and harmful. Nevertheless in this work, precisely controlling laser parameters during printing can intentionally introduce controllable porosity, yielding a porous electrode with enhanced catalytic activity for the oxygen evolution reaction (OER). This study demonstrates that deliberate introduction of porosity, typically considered a defect, leads to improved gas molecule desorption, enhanced mass transfer, and increased catalytically active sites. The optimized P-93% electrode displays superior OER performance with an overpotential of 270 mV at 20 mA cm-2. Furthermore, it exhibits remarkable long-term stability, operating continuously for over 1000 h at 10 mA cm-2 and more than 500 h at 500 mA cm-2. This study not only provides a straightforward and mass-producible method for efficient, binder-free OER catalysts but also, if optimized, underscores the potential of laser-based AM driven defect engineering as a promising strategy for industrial water splitting.

16.
Nano Lett ; 24(4): 1062-1073, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38164915

RESUMEN

Senescence of activated hepatic stellate cells (HSCs) is crucial for the regression of liver fibrosis. However, impaired immune clearance can result in the accumulation of senescent HSCs, exacerbating liver fibrosis. The activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for both senescence and the innate immune response. Additionally, the specific delivery to activated HSCs is hindered by their inaccessible anatomical location, capillarization of liver sinusoidal endothelial cells (LSECs), and loss of substance exchange. Herein, we propose an antifibrotic strategy that combines prosenescence with enhanced immune clearance through targeted delivery of manganese (a cGAS-STING stimulator) via albumin-mediated transcytosis, specifically aimed at inducing senescence and eliminating activated HSCs in liver fibrosis. Our findings demonstrate that only albumin efficiently transfers manganese to activated HSCs from LSECs via transcytosis compared to liposomes, resulting in significant antifibrotic effects in vivo while exhibiting negligible toxicity.


Asunto(s)
Células Estrelladas Hepáticas , Hígado , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/patología , Manganeso , Células Endoteliales/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Albúminas/metabolismo , Nucleotidiltransferasas/metabolismo
17.
J Proteome Res ; 23(1): 175-184, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37909265

RESUMEN

Understanding the pathogenesis and finding diagnostic markers for colorectal cancer (CRC) are the key to its diagnosis and treatment. Integrated transcriptomics and proteomics analysis can be used to characterize alterations of molecular phenotypes and reveal the hidden pathogenesis of CRC. This study employed a novel strategy integrating transcriptomics and proteomics to identify pathological molecular pathways and diagnostic biomarkers of CRC. First, differentially expressed proteins and coexpressed genes generated from weighted gene coexpression network analysis (WGCNA) were intersected to obtain key genes of the CRC phenotype. In total, 63 key genes were identified, and pathway enrichment analysis showed that the process of coagulation and peptidase regulator activity could both play important roles in the development of CRC. Second, protein-protein interaction analysis was then conducted on these key genes to find the central genes involved in the metabolic pathways underpinning CRC. Finally, Itih3 and Lrg1 were further screened out as diagnostic biomarkers of CRC by applying statistical analysis on central genes combining transcriptomics and proteomics data. The deep involvement of central genes in tumorigenesis demonstrates the accuracy and reliability of this novel transcriptomics-proteomics integration strategy in biomarker discovery. The identified candidate biomarkers and enriched metabolic pathways provide insights for CRC diagnosis and treatment.


Asunto(s)
Neoplasias Colorrectales , Proteómica , Humanos , Reproducibilidad de los Resultados , Biomarcadores de Tumor , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Fenotipo , Regulación Neoplásica de la Expresión Génica
18.
J Cell Physiol ; 239(4): e31190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219075

RESUMEN

Selenium (Se), as one of the essential trace elements, plays an anti-inflammatory, antioxidation, and immune-enhancing effect in the body. In addition, Se can also improve nervous system damage induced by various factors. Earlier studies have described the important role of mitochondrial dynamic imbalance in lipopolysaccharide (LPS)-induced nerve injury. The inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 (VDAC1) complex is considered to be the key to regulating mitochondrial dynamics. However, it is not clear whether Selenomethionine (SeMet) has any influence on the IP3R/GRP75/VDAC1 complex. Therefore, the aim of this investigation was to determine whether SeMet can alleviate LPS-induced brain damage and to elucidate the function of the IP3R/GRP75/VDAC1 complex in it. We established SeMet and/or LPS exposure models in vivo and in vitro using laying hens and primary chicken nerve cells. We noticed that SeMet reversed endoplasmic reticulum stress (ERS) and the imbalance in mitochondrial dynamics and significantly prevented the occurrence of neuronal apoptosis. We made this finding by morphological observation of the brain tissue of laying hens and the detection of related genes such as ERS, the IP3R/GRP75/VDAC1 complex, calcium signal (Ca2+), mitochondrial dynamics, and apoptosis. Other than that, we also discovered that the IP3R/GRP75/VDAC1 complex was crucial in controlling Ca2+ transport between the endoplasmic reticulum and the mitochondrion when SeMet functions as a neuroprotective agent. In summary, our results revealed the specific mechanism by which SeMet alleviated LPS-induced neuronal apoptosis for the first time. As a consequence, SeMet has great potential in the treatment and prevention of neurological illnesses (like neurodegenerative diseases).


Asunto(s)
Apoptosis , Proteínas HSP70 de Choque Térmico , Proteínas de la Membrana , Dinámicas Mitocondriales , Neuronas , Selenometionina , Animales , Femenino , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Pollos , Lipopolisacáridos/farmacología , Selenometionina/farmacología , Canal Aniónico 1 Dependiente del Voltaje/genética , Neuronas/efectos de los fármacos
19.
Small ; : e2404099, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940444

RESUMEN

The chemically pre-intercalated lattice engineering is widely applied to elevate the electronic conductivity, expand the interlayer spacing, and improve the structural stability of layered oxide cathodes. However, the mainstream unitary metal ion pre-intercalation generally produces the cation/vacancy ordered superstructure, which astricts the further improvement of lattice respiration and charge-carrier ion storage and diffusion. Herein, a multiple metal ions pre-intercalation lattice engineering is proposed to break the cation/vacancy ordered superstructure. Taking the bilayer V2O5 as an example, Ni, Co, and Zn ternary ions are simultaneously pre-intercalated into its interlayer space (NiCoZnVO). It is revealed that the Ni─Co neighboring characteristic caused by Ni(3d)-O(2p)-Co(3d) orbital coupling and the Co-Zn/Ni-Zn repulsion effect due to chemical bond incompatibility, endow the NiCoZnVO sample with the cation/vacancy disordered structure. This not only reduces the Li+ diffusion barrier, but also increases the diffusion dimension of Li+ (from one-dimension to two-dimension). Particularly, Ni, Co, and Zn ions co-pre-intercalation causes a prestress, which realizes a quasi-zero-strain structure at high-voltage window upon charging/discharging process. The functions of Ni ion stabilizing the lattice structure and Co or Zn ions activating more Li+ reversible storage reaction of V5+/V4+ are further revealed. The cation/vacancy disordered structure significantly enhances Li+ storage properties of NiCoZnVO cathode.

20.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975610

RESUMEN

MOTIVATION: We have entered the multi-omics era and can measure cells from different aspects. Hence, we can get a more comprehensive view by integrating or matching data from different spaces corresponding to the same object. However, it is particularly challenging in the single-cell multi-omics scenario because such data are very sparse with extremely high dimensions. Though some techniques can be used to measure scATAC-seq and scRNA-seq simultaneously, the data are usually highly noisy due to the limitations of the experimental environment. RESULTS: To promote single-cell multi-omics research, we overcome the above challenges, proposing a novel framework, contrastive cycle adversarial autoencoders, which can align and integrate single-cell RNA-seq data and single-cell ATAC-seq data. Con-AAE can efficiently map the above data with high sparsity and noise from different spaces to a coordinated subspace, where alignment and integration tasks can be easier. We demonstrate its advantages on several datasets. AVAILABILITY AND IMPLEMENTATION: Zenodo link: https://zenodo.org/badge/latestdoi/368779433. github: https://github.com/kakarotcq/Con-AAE.


Asunto(s)
Multiómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Secuenciación del Exoma , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA