RESUMEN
In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.
Asunto(s)
Densidad Ósea , Huesos , Encéfalo , Hormonas , Madres , Proteína Hiperexpresada del Nefroblastoma , Osteogénesis , Adolescente , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Huesos/citología , Huesos/metabolismo , Remodelación Ósea , Resorción Ósea/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Calcio/administración & dosificación , Calcio/metabolismo , Lactancia/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Hormonas/metabolismoRESUMEN
Heat stress severely restricts the growth and fruit development of apple (Malus domestica). Little is known about the involvement of WRKY proteins in the heat tolerance mechanism in apple. In this study, we found that the apple transcription factor (TF) MdWRKY75 responds to heat and positively regulates basal thermotolerance. Apple plants that overexpressed MdWRKY75 were more tolerant to heat stress while silencing MdWRKY75 caused the opposite phenotype. RNA-seq and reverse transcription quantitative PCR showed that heat shock factor genes (MdHsfs) could be the potential targets of MdWRKY75. Electrophoretic mobility shift, yeast one-hybrid, ß-glucuronidase, and dual-luciferase assays showed that MdWRKY75 can bind to the promoters of MdHsf4, MdHsfB2a, and MdHsfA1d and activate their expression. Apple plants that overexpressed MdHsf4, MdHsfB2a, and MdHsfA1d exhibited heat tolerance and rescued the heat-sensitive phenotype of MdWRKY75-Ri3. In addition, apple heat shock cognate 70 (MdHSC70) interacts with MdWRKY75, as shown by yeast two-hybrid, split luciferase, bimolecular fluorescence complementation, and pull-down assays. MdHSC70 acts as a negative regulator of the heat stress response. Apple plants that overexpressed MdHSC70 were sensitive to heat, while virus-induced gene silencing of MdHSC70 enhanced heat tolerance. Additional research showed that MdHSC70 exhibits heat sensitivity by interacting with MdWRKY75 and inhibiting MdHsfs expression. In summary, we proposed a mechanism for the response of apple to heat that is mediated by the "MdHSC70/MdWRKY75-MdHsfs" molecular module, which enhances our understanding of apple thermotolerance regulated by WRKY TFs.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Termotolerancia , Malus/genética , Malus/metabolismo , Malus/fisiología , Termotolerancia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Regiones Promotoras Genéticas/genéticaRESUMEN
Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.
Asunto(s)
Envejecimiento/patología , Huesos/patología , Senescencia Celular , Inflamación/patología , Nicho de Células Madre , Células Madre/patología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Linaje de la Célula , Femenino , Curación de Fractura , Hematopoyesis , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Células Mieloides/citología , Osteoclastos/citología , RejuvenecimientoRESUMEN
Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.
Asunto(s)
Nicotiana , Nicotiana/virología , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Permeabilidad de la Membrana Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de Plantas/genética , Virus de Plantas/fisiología , Enfermedades de las Plantas/virología , Potasio/metabolismoRESUMEN
The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (MÏs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat-GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal MÏs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in MÏs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of MÏ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.
Asunto(s)
Acetilcolina , Colina O-Acetiltransferasa , Macrófagos Peritoneales , Peritonitis , Animales , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Peritonitis/inmunología , Peritonitis/metabolismo , Ratones , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Acetilcolina/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL , Transducción de Señal , Inflamación/metabolismo , Inflamación/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Receptores Toll-Like/metabolismo , Fagocitosis , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones NoqueadosRESUMEN
BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.
Asunto(s)
Linfocitos T CD8-positivos , Homeostasis , Fallo Hepático Agudo , Receptores CCR7 , Animales , Receptores CCR7/metabolismo , Receptores CCR7/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Humanos , Fallo Hepático Agudo/inmunología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Masculino , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Acetaminofén/toxicidad , Acetaminofén/efectos adversos , Quimiocina CCL21/metabolismo , Quimiocina CCL21/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Femenino , Ratones NoqueadosRESUMEN
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Malus , Hojas de la Planta , Proteínas de Plantas , Malus/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Malus/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Transducción de SeñalRESUMEN
The aim of this study was to investigate brain structure and corresponding static and dynamic functional connectivity (sFC & dFC) abnormalities in untreated, first-episode pediatric idiopathic generalized epilepsy (IGE), with the goal of better understanding the underlying pathological mechanisms of IGE. Thirty-one children with IGE and 31 age-matched healthy controls (HC) were recruited. Structural magnetic resonance imaging (sMRI) data were acquired, and voxel-based morphometry (VBM) analysis were performed to reveal abnormal gray matter volume (GMV). Moreover, sFC and dFC analyses were conducted using the brain areas exhibiting abnormal GMV as seed regions to explore abnormal functional couplings. Compared to HC, the IGE group exhibited increased GMV in left middle cingulate cortex (MCC) and right parahippocampus (ParaHipp). In addition, the analyses of dFC and sFC with MCC and ParaHipp as seeds revealed more extensive functional connectivity (FC) changes in dFC. Notably, the structurally and functionally abnormal brain areas were primarily localized in the default mode network (DMN). However, our study did not find any significant associations between these altered neuroimaging measurements and clinical outcomes. This study uncovered microstructural changes as well as corresponding sFC and dFC changes in patients with new-onset, untreated pediatric IGE. The affected brain regions were primarily located within the DMN, highlighting the DMN's crucial role in the development of pediatric IGE.
Asunto(s)
Mapeo Encefálico , Epilepsia Generalizada , Humanos , Niño , Mapeo Encefálico/métodos , Encéfalo , Imagen por Resonancia Magnética/métodos , Inmunoglobulina ERESUMEN
The Tumor Immune Single Cell Hub 2 (TISCH2) is a resource of single-cell RNA-seq (scRNA-seq) data from human and mouse tumors, which enables comprehensive characterization of gene expression in the tumor microenvironment (TME) across multiple cancer types. As an increasing number of datasets are generated in the public domain, in this update, TISCH2 has included 190 tumor scRNA-seq datasets covering 6 million cells in 50 cancer types, with 110 newly collected datasets and almost tripling the number of cells compared with the previous release. Furthermore, TISCH2 includes several new functions that allow users to better utilize the large-scale scRNA-seq datasets. First, in the Dataset module, TISCH2 provides the cell-cell communication results in each dataset, facilitating the analyses of interacted cell types and the discovery of significant ligand-receptor pairs between cell types. TISCH2 also includes the transcription factor analyses for each dataset and visualization of the top enriched transcription factors of each cell type. Second, in the Gene module, TISCH2 adds functions for identifying correlated genes and providing survival information for the input genes. In summary, TISCH2 is a user-friendly, up-to-date and well-maintained data resource for gene expression analyses in the TME. TISCH2 is freely available at http://tisch.comp-genomics.org/.
Asunto(s)
Neoplasias , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis de Expresión Génica de una Sola Célula/métodos , Transcriptoma , Microambiente Tumoral/genética , Conjuntos de Datos como AsuntoRESUMEN
Mycoplasma hominis, a commensal bacterium that commonly inhabits the genital tract, leading to infections in both the genitourinary and extragenital regions. However, the antimicrobial resistance and pathogenic mechanisms of M. hominis isolated from extra-urogenital cystic abscess is largely unknown. This study reports the genomic epidemiological characteristics of a M. hominis isolate recovered from a pelvic abscess sample in China. Genomic DNA was extracted and sequenced using Illumina HiSeq X Ten platform. De novo assembly was performed and in silico analysis was accomplished by multiple bioinformatics tools. For phylogenomic analysis, publicly available M. hominis genomes were retrieved from NCBI GenBank database. Whole genome sequencing data showed that the genome size of M. hominis MH4246 was calculated as 679,746 bp, with 558 protein-coding sequences and a G + C content of 26.9%. M. hominis MH4246 is resistant to fluoroquinolones and macrolides, harboring mutations in the quinolone resistance-determining regions (QRDRs) (GyrA S153L, ParC S91I and ParE V417I) and 23S rRNA gene (G280A, C1500T, T1548C and T2218C). Multiple virulence determinants, such as tuf, hlyA, vaa, oppA, MHO_0730 and alr genes, were identified. Phylogenetic analysis showed that the closest relative of M. hominis MH4246 was the strain MH-1 recovered from China, which differed by 3490 SNPs. Overall, this study contributes to the comprehension of genomic characteristics, antimicrobial resistance patterns, and the mechanisms underlying the pathogenicity of this pathogen.
Asunto(s)
Absceso , Mycoplasma hominis , Humanos , Mycoplasma hominis/genética , Filogenia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fluoroquinolonas/farmacología , Fluoroquinolonas/uso terapéuticoRESUMEN
BACKGROUND: Methadone maintenance treatment (MMT) is effective for managing opioid use disorder, but adverse effects mean that optimal therapy occurs with the lowest dose that controls opioid craving. OBJECTIVE: To assess the efficacy of acupuncture versus sham acupuncture on methadone dose reduction. DESIGN: Multicenter, 2-group, randomized, sham-controlled trial. (Chinese Clinical Trial Registry: ChiCTR2200058123). SETTING: 6 MMT clinics in China. PARTICIPANTS: Adults aged 65 years or younger with opioid use disorder who attended clinic daily and had been using MMT for at least 6 weeks. INTERVENTION: Acupuncture or sham acupuncture 3 times a week for 8 weeks. MEASUREMENTS: The 2 primary outcomes were the proportion of participants who achieved a reduction in methadone dose of 20% or more compared with baseline and opioid craving, which was measured by the change from baseline on a 100-mm visual analogue scale (VAS). RESULTS: Of 118 eligible participants, 60 were randomly assigned to acupuncture and 58 were randomly assigned to sham acupuncture (2 did not receive acupuncture). At week 8, more patients reduced their methadone dose 20% or more with acupuncture than with sham acupuncture (37 [62%] vs. 16 [29%]; risk difference, 32% [97.5% CI, 13% to 52%]; P < 0.001). In addition, acupuncture was more effective in decreasing opioid craving than sham acupuncture with a mean difference of -11.7 mm VAS (CI, -18.7 to -4.8 mm; P < 0.001). No serious adverse events occurred. There were no notable differences between study groups when participants were asked which type of acupuncture they received. LIMITATION: Fixed acupuncture protocol limited personalization and only 12 weeks of follow-up after stopping acupuncture. CONCLUSION: Eight weeks of acupuncture were superior to sham acupuncture in reducing methadone dose and decreasing opioid craving. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China.
Asunto(s)
Terapia por Acupuntura , Metadona , Tratamiento de Sustitución de Opiáceos , Trastornos Relacionados con Opioides , Humanos , Metadona/uso terapéutico , Masculino , Terapia por Acupuntura/efectos adversos , Terapia por Acupuntura/métodos , Femenino , Trastornos Relacionados con Opioides/terapia , Adulto , Persona de Mediana Edad , Tratamiento de Sustitución de Opiáceos/métodos , Ansia , Resultado del Tratamiento , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversosRESUMEN
Antibiotic therapeutics to combat intestinal pathogen infections often exacerbate microbiota dysbiosis and impair mucosal barrier functions. Probiotics are promising strategies, because they inhibit pathogen colonization and improve intestinal microbiota imbalance. Nevertheless, their limited targeting ability and susceptibility to oxidative stress have hindered their therapeutic potential. To tackle these challenges, Ces3 is synthesized by in situ growth of CeO2 nanozymes with positive charges on probiotic spores, facilitating electrostatic interactions with negatively charged pathogens and possessing a high reactive oxygen species (ROS) scavenging activity. Importantly, Ces3 can resist the harsh environment of the gastrointestinal tract. In mice with S. Typhimurium-infected acute gastroenteritis, Ces3 shows potent anti-S. Typhimurium activity, thereby alleviating the dissemination of S. Typhimurium into other organs. Additionally, owing to its O2 deprivation capacity, Ces3 promotes the proliferation of anaerobic probiotics, reshaping a healthy intestinal microbiota. This work demonstrates the promise of combining antibacterial, anti-inflammatory, and O2 content regulation properties for acute gastroenteritis therapy.
Asunto(s)
Gastroenteritis , Probióticos , Animales , Ratones , Intestinos , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/microbiología , Antibacterianos/uso terapéutico , Probióticos/uso terapéutico , EsporasRESUMEN
Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.
Asunto(s)
Microscopía Intravital , Hepatopatías , Hígado , Microscopía Intravital/métodos , Humanos , Hígado/inmunología , Hígado/diagnóstico por imagen , Hígado/patología , Hepatopatías/inmunología , Hepatopatías/diagnóstico por imagen , AnimalesRESUMEN
The electrochemical NO reduction reaction (NORR) is a promising approach for both nitrogen cycle regulation and ammonia synthesis. Due to the relatively low concentration of the NO source and poor solubility of NO in solution, mass transfer limitation is a serious but easily overlooked issue. In this work, porous carbon-supported ultrafine Cu clusters grown on Cu nanowire arrays (defined as Cu@Cu/C NWAs) are prepared for low-concentration NORR. A high Faradaic efficiency (93.0%) and yield rate (1180.5 µg h-1 cm-2) of ammonia are realized on Cu@Cu/C NWAs at -0.1 V vs a reversible hydrogen electrode (RHE), which are far superior to those of Cu NWAs and other reported performances under similar conditions. The construction of a porous carbon support can effectively decrease the NO diffusion kinetics and promote NO coverage for subsequent highly effective conversion. Moreover, the favorable metal-support interaction between ultrafine Cu clusters and carbon support enhances the adsorption of NO and decreases the barrier for *HNO formation in comparison with that of pure Cu NWAs. Overall, the whole NORR can be fully strengthened on Cu@Cu/C NWAs at low NO concentrations.
RESUMEN
The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Manganeso , Peptidilprolil Isomerasa de Interacción con NIMA , Óxidos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Óxidos/química , Óxidos/farmacología , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanoestructuras/química , Antineoplásicos/química , Antineoplásicos/farmacología , Arsenicales/química , Arsenicales/farmacología , Arsenicales/uso terapéutico , Ratones , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Línea Celular Tumoral , Polietilenglicoles/químicaRESUMEN
The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cocaína , Animales , Humanos , Aptámeros de Nucleótidos/química , Suero , Cocaína/químicaRESUMEN
BACKGROUND: Diabetes mellitus (DM) affects up to one-third of breast cancer (BC) patients. Patients with co-existing BC and DM (BC-DM) have worsened BC prognosis. Nevertheless, the molecular mechanisms orchestrating BC-DM prognosis remain poorly understood. tRNA-derived fragments (tRFs) have been shown to regulate cancer progression. However, the biological role of tRFs in BC-DM has not been explored. METHODS: tRF levels in tumor tissues and cells were detected by tRF sequencing and qRT-PCR. The effects of tRF on BC cell malignancy were assessed under euglycemic and hyperglycemic conditions in vitro. Metabolic changes were assessed by lactate, pyruvate, and extracellular acidification rate (ECAR) assays. Diabetic animal model was used to evaluate the impacts of tRF on BC tumor growth. RNA-sequencing (RNA-seq), qRT-PCR, Western blot, polysome profiling, luciferase reporter assay, and rescue experiments were performed to explore the regulatory mechanisms of tRF in BC-DM. RESULTS: We identified that tRF-Cys-GCA-029 was downregulated in BC-DM tissues and under hyperglycemia conditions in BC cells. Functionally, downregulation of tRF-Cys-GCA-029 promoted BC cell proliferation and migration in a glucose level-dependent manner. tRF-Cys-GCA-029 knockdown also enhanced glycolysis metabolism in BC cells, indicated by increasing lactate/pyruvate production and ECAR levels. Notably, injection of tRF-Cys-GCA-029 mimic significantly suppressed BC tumor growth in diabetic-mice. Mechanistically, tRF-Cys-GCA-029 regulated BC cell malignancy and glycolysis via interacting with PRKCG in two ways: binding to the coding sequence (CDS) of PRKCG mRNA to regulate its transcription and altering polysomal PRKCG mRNA expression to modify its translation. CONCLUSIONS: Hyperglycemia-downregulated tRF-Cys-GCA-029 enhances the malignancy and glycolysis of BC cells. tRF-Cys-GCA-029-PRKCG-glycolysis axis may be a potential therapeutic target against BC-DM.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Glucólisis , Hiperglucemia , Humanos , Femenino , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hiperglucemia/metabolismo , Hiperglucemia/genética , Ratones , Proliferación Celular , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Línea Celular Tumoral , Carcinogénesis/genética , Regulación hacia Abajo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Regulación hacia Arriba , PronósticoRESUMEN
Chimeric RNAs, which can arise from gene recombination at the DNA level or non-canonical splicing events at the RNA level, have been identified as important roles in human tumors. Dysregulated gene expression caused by somatic mutations and altered splicing patterns of oncogenes or tumor suppressor genes can contribute to the development of tumors. Therefore, investigating the formation mechanism of chimeric RNAs via somatic mutations is critical for understanding tumor pathogenesis. This project is the first to propose studying the association between somatic single nucleotide variants and chimeric RNAs, identifying around 2900 somatic SNVs affecting chimeric RNAs in pan-cancer level. The somatic SNVs on chimeric RNAs were commonly observed in various types of tumor tissues, providing a valuable resource for future study. Additionally, these SNVs show distinct tumor specificity, and those with high frequency had a significant impact on the survival time of patients with tumors. Further research revealed that somatic SNVs associated with chimeric RNA (chiR-SNVs) were typically found within 10 nt of the junction site of chimeric RNAs and had a particularly significant effect on chimeric RNAs from different chromosomes. The enrichment analysis revealed that chiR-SNVs were significantly overrepresented in oncogenes and genes related to RNA binding proteins involved in RNA splicing, which could imply that chiR-SNVs may disrupt the process of RNA splicing and induce the occurrence of chimeric RNAs. This study sheds light on the potential molecular interaction mechanism between somatic SNVs and chimeric RNAs, which opens up a new avenue for researching disease pathway and tumorigenesis development.
Asunto(s)
Mutación , Neoplasias , Empalme del ARN , Humanos , Neoplasias/genética , Empalme del ARN/genética , Polimorfismo de Nucleótido Simple , Oncogenes/genética , ARN/genéticaRESUMEN
OBJECTIVE: To provide procedure-specific estimates of symptomatic venous thromboembolism (VTE) and major bleeding after abdominal surgery. BACKGROUND: The use of pharmacological thromboprophylaxis represents a trade-off that depends on VTE and bleeding risks that vary between procedures; their magnitude remains uncertain. METHODS: We identified observational studies reporting procedure-specific risks of symptomatic VTE or major bleeding after abdominal surgery, adjusted the reported estimates for thromboprophylaxis and length of follow-up, and estimated cumulative incidence at 4 weeks postsurgery, stratified by VTE risk groups, and rated evidence certainty. RESULTS: After eligibility screening, 285 studies (8,048,635 patients) reporting on 40 general abdominal, 36 colorectal, 15 upper gastrointestinal, and 24 hepatopancreatobiliary surgery procedures proved eligible. Evidence certainty proved generally moderate or low for VTE and low or very low for bleeding requiring reintervention. The risk of VTE varied substantially among procedures: in general abdominal surgery from a median of <0.1% in laparoscopic cholecystectomy to a median of 3.7% in open small bowel resection, in colorectal from 0.3% in minimally invasive sigmoid colectomy to 10.0% in emergency open total proctocolectomy, and in upper gastrointestinal/hepatopancreatobiliary from 0.2% in laparoscopic sleeve gastrectomy to 6.8% in open distal pancreatectomy for cancer. CONCLUSIONS: VTE thromboprophylaxis provides net benefit through VTE reduction with a small increase in bleeding in some procedures (eg, open colectomy and open pancreaticoduodenectomy), whereas the opposite is true in others (eg, laparoscopic cholecystectomy and elective groin hernia repairs). In many procedures, thromboembolism and bleeding risks are similar, and decisions depend on individual risk prediction and values and preferences regarding VTE and bleeding.
Asunto(s)
Neoplasias Colorrectales , Trombosis , Tromboembolia Venosa , Humanos , Anticoagulantes/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Hemorragia , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/tratamiento farmacológico , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/etiología , Tromboembolia Venosa/prevención & controlRESUMEN
Acute myeloid leukemia (AML) is a fatal hematologic disease. Diagnosis and proper treatment are important for prognosis. High myeloperoxidase (MPO) expression AML cells are characterized with high levels of hypochlorite (ClO-). In this study, we report a ClO--activated theranostic agent, FNC, for AML therapy. FNC responds to ClO- specifically in high MPO expression AML cells, resulting in bright fluorescence and chlorambucil release. FNC can be used to quickly distinguish high MPO expression AML cells from other cells, including low MPO expression leukemia and activated inflammatory cells. FNC exhibits selective toxicity to highly MPO expression AML cells and can efficiently inhibit tumor growth. Meanwhile, FNC can be used to indicate differentiation through the detection of ClO-.