Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38378891

RESUMEN

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Asunto(s)
Aedes , Virus Zika , Animales , Aedes/virología , Aedes/metabolismo , Femenino , Virus Zika/fisiología , Ratones , Virus del Dengue/fisiología , Proteínas y Péptidos Salivales/metabolismo , Mosquitos Vectores/virología , Proteínas de Insectos/metabolismo , Células Mieloides/virología , Células Mieloides/metabolismo , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Dengue/transmisión , Dengue/virología , Dengue/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética
2.
J Am Chem Soc ; 146(5): 3545-3552, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277257

RESUMEN

Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.

3.
Small ; : e2402575, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860359

RESUMEN

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

4.
Plant Physiol ; 191(1): 352-368, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36179100

RESUMEN

The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Fitomejoramiento , Brassica rapa/genética , Semillas/genética , Semillas/metabolismo
5.
Plant Cell Environ ; 47(4): 1023-1040, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984059

RESUMEN

Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Resistencia a la Sequía , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Ubiquitina/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo
6.
Anal Biochem ; 691: 115553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697592

RESUMEN

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Asunto(s)
Ácido Acético , Electroforesis en Gel de Poliacrilamida , Metanol , Microondas , Proteínas , Electroforesis en Gel de Poliacrilamida/métodos , Metanol/química , Proteínas/análisis , Ácido Acético/química , Coloración y Etiquetado/métodos , Colorantes de Rosanilina/química
7.
Anal Biochem ; 690: 115509, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38508332

RESUMEN

DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.

8.
Br J Dermatol ; 191(1): 107-116, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38489583

RESUMEN

BACKGROUND: Inherited hyperpigmented skin disorders comprise a group of entities with considerable clinical and genetic heterogenicity. The genetic basis of a majority of these disorders remains to be elucidated. OBJECTIVES: This study aimed to identify the underlying gene for an unclarified disorder of autosomal-dominant generalized skin hyperpigmentation with or without glomuvenous malformation. METHODS: Whole-exome sequencing was performed in five unrelated families with autosomal-dominant generalized skin hyperpigmentation. Variants were confirmed using Sanger sequencing and a minigene assay was employed to evaluate the splicing alteration. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the quantity of melanocytes and melanosomes in hyperpigmented skin lesions. GLMN knockdown by small interfering RNA assays was performed in human MNT-1 cells to examine melanin concentration and the underlying molecular mechanism. RESULTS: We identified five variants in GLMN in five unrelated families, including c.995_996insAACA(p.Ser333Thrfs*11), c.632 + 4delA, c.1470_1473dup(p.Thr492fs*12), c.1319G > A(p.Trp440*) and c.1613_1614insTA(Thr540*). The minigene assay confirmed that the c.632 + 4delA mutant resulted in abolishment of the canonical donor splice site. Although the number of melanocytes remained unchanged in skin lesions, as demonstrated by immunofluorescent staining of tyrosinase and premelanosome protein, TEM revealed an increased number of melanosomes in the skin lesion of a patient. The GLMN knockdown MNT-1 cells demonstrated a higher melanin concentration, a higher proportion of stage III and IV melanosomes, upregulation of microphthalmia-associated transcription factor and tyrosinase, and downregulation of phosphorylated p70S6 K vs. mock-transfected cells. CONCLUSIONS: We found that loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation. Our study implicates a potential role of glomulin in human skin melanogenesis, in addition to vascular morphogenesis.


A group of skin conditions known as 'inherited hyperpigmented skin disorders' includes some diseases with different clinical and genetic traits. The genetic basis of the majority of these diseases is not understood. To identify the gene responsible for a disease that causes darker patches of skin (hyperpigmentation) with or without the abnormal growth of blood vessels and the presence of cells named glomus cells (a glomuvenous malformation), we used genetic techniques called whole-exome sequencing and Sanger sequencing in five unrelated families with this disease. We also used a technique called a 'minigene assay' to evaluate genetic alterations in a gene called GLMN, which encodes a protein called glomulin. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the number of pigment-producing cells (called melanocytes) and melanosomes (where the pigment melanin is synthesized, stored and transported) in hyperpigmented skin lesions. We identified five different variants of the GLMN gene in five unrelated families. Although the number of melanocytes remained unchanged in skin lesions, TEM revealed an increased number of melanosomes. By 'switching off' the GLMN gene, we found that skin cells produced more pigment, as well as the proteins MITF and tyrosinase; they also showed a decrease in the phosphorylated protein p-p70S6 K. Overall, we found that loss-of-function mutations in GLMN caused skin hyperpigmentation with or without abnormal blood vessels. The results suggest there could be a potential role of the protein glomulin in human skin colour and blood vessel changes.


Asunto(s)
Secuenciación del Exoma , Hiperpigmentación , Melanocitos , Linaje , Humanos , Hiperpigmentación/genética , Hiperpigmentación/patología , Femenino , Masculino , Melanocitos/metabolismo , Adulto , Mutación con Pérdida de Función , Tumor Glómico/genética , Tumor Glómico/patología , Melanosomas/genética , Niño , Melaninas/metabolismo , Adolescente , Piel/patología , Piel/irrigación sanguínea , Persona de Mediana Edad , Paraganglioma Extraadrenal , Proteínas Adaptadoras Transductoras de Señales
9.
EMBO Rep ; 23(11): e55671, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197120

RESUMEN

Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.


Asunto(s)
Virus del Dengue , Dengue , Animales , Virus del Dengue/genética , Dengue/epidemiología , Filogenia , Serogrupo , Genotipo , Mutación , Mamíferos
10.
Bioorg Chem ; 148: 107467, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772290

RESUMEN

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Asunto(s)
Antineoplásicos , Proliferación Celular , Cumarinas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos
11.
Clin Rehabil ; : 2692155241251434, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693881

RESUMEN

OBJECTIVE: Depth camera-based measurement has demonstrated efficacy in automated assessment of upper limb Fugl-Meyer Assessment for paralysis rehabilitation. However, there is a lack of adequately sized studies to provide clinical support. Thus, we developed an automated system utilizing depth camera and machine learning, and assessed its feasibility and validity in a clinical setting. DESIGN: Validation and feasibility study of a measurement instrument based on single cross-sectional data. SETTING: Rehabilitation unit in a general hospital. PARTICIPANTS: Ninety-five patients with hemiparesis admitted for inpatient rehabilitation unit (2021-2023). MAIN MEASURES: Scores for each item, excluding those related to reflexes, were computed utilizing machine learning models trained on participant videos and readouts from force test devices, while the remaining reflex scores were derived through regression algorithms. Concurrent criterion validity was evaluated using sensitivity, specificity, percent agreement and Cohen's Kappa coefficient for ordinal scores of individual items, as well as correlations and intraclass correlation coefficients for total scores. Video-based manual assessment was also conducted and compared to the automated tools. RESULT: The majority of patients completed the assessment without therapist intervention. The automated scoring models demonstrated superior validity compared to video-based manual assessment across most items. The total scores derived from the automated assessment exhibited a high coefficient of 0.960. However, the validity of force test items utilizing force sensing resistors was relatively low. CONCLUSION: The integration of depth camera technology and machine learning models for automated Fugl-Meyer Assessment demonstrated acceptable validity and feasibility, suggesting its potential as a valuable tool in rehabilitation assessment.

12.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475077

RESUMEN

Accurate extraction of crop acreage is an important element of digital agriculture. This study uses Sentinel-2A, Sentinel-1, and DEM as data sources to construct a multidimensional feature dataset encompassing spectral features, vegetation index, texture features, terrain features, and radar features. The Relief-F algorithm is applied for feature selection to identify the optimal feature dataset. And the combination of deep learning and the random forest (RF) classification method is utilized to identify lilies in Qilihe District and Yuzhong County of Lanzhou City, obtain their planting structure, and analyze their spatial distribution characteristics in Gansu Province. The findings indicate that terrain features significantly contribute to ground object classification, with the highest classification accuracy when the number of features in the feature dataset is 36. The precision of the deep learning classification method exceeds that of RF, with an overall classification accuracy and kappa coefficient of 95.9% and 0.934, respectively. The Lanzhou lily planting area is 137.24 km2, and it primarily presents a concentrated and contiguous distribution feature. The study's findings can serve as a solid scientific foundation for Lanzhou City's lily planting structure adjustment and optimization and a basis of data for local lily yield forecasting, development, and application.

13.
Sensors (Basel) ; 24(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794100

RESUMEN

The field of computer vision has been focusing on achieving accurate three-dimensional (3D) object representations from a single two-dimensional (2D) image through deep artificial neural networks. Recent advancements in 3D shape reconstruction techniques that combine structured light and deep learning show promise in acquiring high-quality geometric information about object surfaces. This paper introduces a new single-shot 3D shape reconstruction method that uses a nonlinear fringe transformation approach through both supervised and unsupervised learning networks. In this method, a deep learning network learns to convert a grayscale fringe input into multiple phase-shifted fringe outputs with different frequencies, which act as an intermediate result for the subsequent 3D reconstruction process using the structured-light fringe projection profilometry technique. Experiments have been conducted to validate the practicality and robustness of the proposed technique. The experimental results demonstrate that the unsupervised learning approach using a deep convolutional generative adversarial network (DCGAN) is superior to the supervised learning approach using UNet in image-to-image generation. The proposed technique's ability to accurately reconstruct 3D shapes of objects using only a single fringe image opens up vast opportunities for its application across diverse real-world scenarios.

14.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891991

RESUMEN

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Animales , Hormona Folículo Estimulante/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Andrógenos/metabolismo , Testosterona/metabolismo
15.
J Environ Manage ; 351: 119688, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064990

RESUMEN

The field practices, including irrigation and fertilization, strongly affect greenhouse gas emissions and soil nutrient cycling from agriculture. Understanding the underlying mechanism of greenhouse gas emissions, soil nutrient cycling, and their impact factors (fungal diversity, network characteristics, soil pH, salt, and moisture) is essential for efficiently managing global greenhouse gas mitigation and agricultural production. By considering abundant and rare taxa, we determine the identities and relative importance of ecological processes that modulate the fungal communities and identify whether they are crucial contributors to soil nutrient cycling and greenhouse gas emissions. The research is based on a 4-year field fertigation experiment with low (300 kg/ha P2O5 with 150 kg/ha urea) and high (600 kg/ha P2O5 with 300 kg/ha urea) fertilization level and three irrigation levels, that is, low (200 mm), medium (300 mm), and high (400 mm). The α-diversity (richness and Shannon index) of fungal subcommunities was significantly higher under medium irrigation (300 mm) and low fertilization (300 kg/ha P2O5 with 150 kg/ha urea) than under other treatments. Intermediate irrigation with low fertilization treatment yielded the most significant higher multinutrient cycling index and the lowest CO2 and CH4 emissions. The null model indicated that abundant taxa are mainly regulated by stochastic processes (dispersal limitation), and rare taxa are mainly regulated by environmental selection, especially by soil salinity. The co-occurrence network of rare taxa explained the changes in the entire fungal network stability. The abundant taxa played vital roles in regulating soil nutrient status, owing to the stronger association between their network and multinutrient cycling index. Furthermore, we have confirmed that soil moisture and fungal network stability are crucial factors affecting greenhouse gas emissions. Together, these results provide a deep understanding of the mechanisms that reveal fungal community assembly and soil fungal-driven variations in nutrient status and network stability, link fungal network characteristics to ecosystem functions, and reveal the factors that influence greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Micobioma , Suelo , Gases de Efecto Invernadero/análisis , Dióxido de Carbono/análisis , Ecosistema , Óxido Nitroso/análisis , Agricultura/métodos , Urea , Fertilización , Metano/análisis , Fertilizantes/análisis
16.
J Am Chem Soc ; 145(49): 27095-27102, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38016919

RESUMEN

Stable luminescent radicals are open-shell emitters with unique doublet emission characteristics. This feature makes stable luminescent radicals exhibit widespread application prospects in constructing optical, electrical, and magnetic materials. In this work, a stable luminescent radical-based X-ray scintillator of AuPP-1.0 was prepared, which exhibited a high X-ray excited luminescence (XEL) efficiency as well as excellent stability. A mechanism study showed that the heavy atom of Au in AuPP-1.0 endowed it with effective absorption of X-rays, and the doublet emission characteristics of AuPP-1.0 significantly increased its exciton utilization rate in the radioluminescence process. Moreover, AuPP-1.0 has good processability to fabricate a flexible screen for high-quality X-ray imaging, whose resolution can reach 20 LP mm-1. This work demonstrates that the doublet emission is beneficial for improving the exciton utilization rate of radioluminescence, providing a brand-new strategy for the construction of high-performance X-ray scintillators.

17.
BMC Plant Biol ; 23(1): 481, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37814209

RESUMEN

BACKGROUND: Phenylalanine ammonia-lyase (PAL), as a key enzyme in the phenylalanine metabolism pathway in plants, plays an important role in the response to environmental stress. However, the PAL family responding to abiotic stress has not been fully characterized in rapeseed. RESULTS: In this study, we conducted a genome-wide study of PAL family, and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements and response to stress treatment. A total of 17 PALs were identified in the rapeseed genome. Based on phylogenetic analysis, the BnPALs were divided into four clades (I, II, IV, and V). The prediction of protein structure domain presented that all BnPAL members contained a conservative PAL domain. Promoter sequence analysis showed that the BnPALs contain many cis-acting elements related to hormone and stress responses, indicating that BnPALs are widely involved in various biological regulatory processes. The expression profile showed that the BnPALs were significantly induced under different stress treatments (NaCl, Na2CO3, AlCl3, and PEG), suggesting that BnPAL family played an important role in response to abiotic stress. CONCLUSIONS: Taken together, our research results comprehensively characterized the BnPAL family, and provided a valuable reference for revealing the role of BnPALs in the regulation of abiotic stress responses in rapeseed.


Asunto(s)
Brassica napus , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Secuencia de Aminoácidos , Filogenia , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/metabolismo
18.
Opt Lett ; 48(7): 1630-1633, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221727

RESUMEN

Structured light was usually studied by two-dimensional (2D) transverse eigenmodes. Recently, the three-dimensional (3D) geometric modes as coherent superposed states of eigenmodes opened new topological indices to shape light, that optical vortices can be coupled on multiaxial geometric rays, but only limited to azimuthal vortex charge. Here, we propose a new structured light family, multiaxial super-geometric modes, enabling full radial and azimuthal indices coupled to multiaxial rays, and they can be directly generated from a laser cavity. Exploiting combined intra- and extra-cavity astigmatic mode conversions, we experimentally verify the versatile tunability of complex orbital angular momentum and SU(2) geometry beyond the limit of prior multiaxial geometric modes, opening new dimensions to revolutionize applications such as optical trapping, manufacturing, and communications.

19.
Pharmacol Res ; 196: 106904, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666311

RESUMEN

PURPOSE: To assess the effectiveness and safety of combining intravitreal endothelial growth factor inhibitor (anti-VEGF) and ocular corticosteroids for diabetic macular edema (DME). METHODS: Articles concentrating on the efficacy and safety of combining anti-VEGF and ocular corticosteroids therapy for DME versus anti-VEGF monotherapy was screened systematically. Meta-analysis was conducted on the basis of a protocol registered in the PROSPERO (CRD42023408338) and performed on the extracted continuous variables and dichotomous variables. The outcome was expressed as weighted mean difference (MD) and risk ratio (RR). RESULTS: Add up to 21 studies including 1468 eyes were enrolled in this study. The MD for best-corrected visual acuity (BCVA) improvement at 1/3/6/12-month between the combination therapy group and monotherapy group were 2.56 (95% CI [0.43, 4.70]), 2.46 (95% CI [-0.40, 5.32]), - 1.76 (95% CI [-3.18, -0.34]), - 1.94 (95% CI [-3.87, 0.00]), respectively. The MD for central retinal thickness (CMT) reduction at 1/3/6/12-month between two groups were - 66.27 (95% CI [-101.08, -31.47]), - 33.62 (95% CI [-57.55, -9.70]), - 4.54 (95% CI [-16.84, 7.76]), - 26.67 (95% CI [-41.52, -11.82]), respectively. Additionally, the combination group had higher relative risk of high intraocular pressure and cataract progression events. CONCLUSIONS: Anti-VEGF combined with ocular corticosteroids had a significant advantage over anti-VEGF monotherapy within 3 months of DME treatment, which reached the maximum with increasing anti-VEGF injection times to 3. However, with the prolongation of the treatment cycle, the effect of combined therapy after 6 months was no better than monotherapy, and the side effects of combined therapy were more severe.

20.
Org Biomol Chem ; 21(38): 7776-7781, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37701943

RESUMEN

A highly efficient and operationally simple method for the synthesis of ß-sulfinyl alkenylsulfones through a BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed, successfully avoiding the complicated anhydrous treatment before the reaction and greatly simplifying the reaction conditions. As a facile and selective route to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and excellent yields. Notably, the trace water in solvent plays a key role in promoting the reaction, which provides a more practical pathway for the utilization of the BF3·OEt2 catalytic system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA