Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(4): 690-699, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914890

RESUMEN

The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39356327

RESUMEN

Single-cell cross-modal joint clustering has been extensively utilized to investigate the tumor microenvironment. Although numerous approaches have been suggested, accurate clustering remains the main challenge. First, the gene expression matrix frequently contains numerous missing values due to measurement limitations. The majority of existing clustering methods treat it as a typical multi-modal dataset without further processing. Few methods conduct recovery before clustering and do not sufficiently engage with the underlying research, leading to suboptimal outcomes. Additionally, the existing cross-modal information fusion strategy does not ensure consistency of representations across different modes, potentially leading to the integration of conflicting information, which could degrade performance. To address these challenges, we propose the 'Recover then Aggregate' strategy and introduce the Unified Cross-Modal Deep Clustering model. Specifically, we have developed a data augmentation technique based on neighborhood similarity, iteratively imposing rank constraints on the Laplacian matrix, thus updating the similarity matrix and recovering dropout events. Concurrently, we integrate cross-modal features and employ contrastive learning to align modality-specific representations with consistent ones, enhancing the effective integration of diverse modal information. Comprehensive experiments on five real-world multi-modal datasets have demonstrated this method's superior effectiveness in single-cell clustering tasks.


Asunto(s)
Análisis de la Célula Individual , Análisis por Conglomerados , Análisis de la Célula Individual/métodos , Humanos , Algoritmos , Microambiente Tumoral , Biología Computacional/métodos
3.
Hum Mol Genet ; 32(5): 860-872, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36226587

RESUMEN

Chromatin regulators constitute a fundamental means of transcription regulation, which have been implicated in neurodevelopment and neurodevelopment disorders (NDDs). Supt16, one of candidate genes for NDDs, encodes the large subunit of facilitates chromatin transcription. However, the underlying mechanisms remain poorly understood. Here, Supt16+/- mice was generated, modeling the neurodevelopment disorder. Abnormal cognitive and social behavior was observed in the Supt16  +/- mice. Simultaneously, the number of neurocytes in the cerebral cortex and hippocampus is decreased, which might be resulted from the impairment of mouse neural stem cells (mNSCs) in the SVZ. Supt16 haploinsufficiency affects the proliferation and apoptosis of mNSCs. As the RNA-seq and chromatic immunoprecipitation sequencing assays showed, Supt16 haploinsufficiency disrupts the stemness of mNSCs by inhibiting MAPK signal pathway. Thus, this study demonstrates a critical role of Supt16 gene in the proliferation and apoptosis of mNSCs and provides a novel insight in the pathogenesis of NDDs.


Asunto(s)
Células-Madre Neurales , Trastornos del Neurodesarrollo , Ratones , Animales , Haploinsuficiencia , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Cromatina/metabolismo
4.
FASEB J ; 38(6): e23538, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38482729

RESUMEN

Stem cells respond and remember mechanical cues from the microenvironment, which modulates their therapeutic effects. Chromatin organization and energy metabolism regulate the stem cell fate induced by mechanical cues. However, the mechanism of mechanical memory is still unclear. This study aimed to investigate the effects of mechanical amplitude, frequency, duration, and stretch cycle on mechanical memory in mesenchymal stem cells. It showed that the amplitude was the dominant parameter to the persistence of cell alignment. F-actin, paxillin, and nuclear deformation are more prone to be remolded than cell alignment. Stretching induces transcriptional memory, resulting in greater transcription upon subsequent reloading. Cell metabolism displays mechanical memory with sustained mitochondrial fusion and increased ATP production. The mechanical memory of chromatin condensation is mediated by histone H3 lysine 27 trimethylation, leading to much higher smooth muscle differentiation efficiency. Interestingly, mechanical memory can be transmitted based on direct cell-cell interaction, and stretched cells can remodel the metabolic homeostasis of static cells. Our results provide insight into the underlying mechanism of mechanical memory and its potential benefits for stem cell therapy.


Asunto(s)
Cromatina , Células Madre Mesenquimatosas , Cromatina/metabolismo , Estrés Mecánico , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Músculo Liso , Proliferación Celular
5.
Nano Lett ; 24(38): 11968-11975, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259027

RESUMEN

The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of •OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 µmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.

6.
J Infect Dis ; 229(6): 1803-1811, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366369

RESUMEN

BACKGROUND: The relationship between accelerated epigenetic aging and musculoskeletal outcomes in women with HIV (WWH) has not been studied. METHODS: We measured DNA methylation age using the Infinium MethylationEPIC BeadChip in a cohort from the Women's Interagency HIV Study (n = 190) with measures of bone mineral density (BMD) and physical function. We estimated 6 biomarkers of epigenetic aging-epigenetic age acceleration (EAA), extrinsic EAA, intrinsic EAA, GrimAge, PhenoAge, and DNA methylation-estimated telomere length-and evaluated associations of epigenetic aging measures with BMD and physical function. We also performed epigenome-wide association studies to examine associations of DNA methylation signatures with BMD and physical function. RESULTS: This study included 118 WWH (mean age, 49.7 years; 69% Black) and 72 without HIV (mean age, 48.9 years; 69% Black). WWH had higher EAA (mean ± SD, 1.44 ± 5.36 vs -1.88 ± 5.07; P < .001) and lower DNA methylation-estimated telomere length (7.13 ± 0.31 vs 7.34 ± 0.23, P < .001) than women without HIV. There were no significant associations between accelerated epigenetic aging and BMD. Rather, measures of accelerated epigenetic aging were associated with lower physical function. CONCLUSIONS: Accelerated epigenetic aging was observed in WWH as compared with women without HIV and was associated with lower physical function in both groups.


Asunto(s)
Envejecimiento , Densidad Ósea , Metilación de ADN , Epigénesis Genética , Infecciones por VIH , Humanos , Femenino , Persona de Mediana Edad , Infecciones por VIH/genética , Envejecimiento/genética , Densidad Ósea/genética , Adulto , Estudios de Cohortes
7.
J Cell Mol Med ; 28(14): e18465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39022816

RESUMEN

Lung cancer (LC) is one of the malignancies with the highest incidence and mortality in the world, approximately 85% of which is non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) exert multiple roles in NSCLC occurrence and development. The sequencing results in previous literature have illustrated that multiple circRNAs exhibit upregulation in NSCLC. We attempted to figure out which circRNA exerts an oncogenic role in NSLCL progression. RT-qPCR evaluated circDHTKD1 level in NSCLC tissue specimens and cells. Reverse transcription as well as RNase R digestion assay evaluated circDHTKD1 circular characterization in NSCLC cells. FISH determined circDHTKD1 subcellular distribution in NSCLC cells. Loss- and gain-of-function assays clarified circDHTKD1 role in NSCLC cell growth, tumour growth and glycolysis. Bioinformatics and RIP and RNA pull-down assessed association of circDHTKD1 with upstream molecule Eukaryotic initiation factor 4A-III (EIF4A3) or downstream molecule phosphofructokinase-1 liver type (PFKL) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in NSCLC cells. Rescue assays assessed regulatory function of PFKL in circDHTKD1-meidated NSCLC cellular phenotypes. CircDHTKD1 exhibited upregulation and stable circular nature in NSCLC cells. EIF4A3 upregulated circDHTKD1 in NSCLC cells. CircDHTKD1 exerted a promoting influence on NSCLC cell malignant phenotypes and tumour growth. CircDHTKD1 exerted a promoting influence on NSCLC glucose metabolism. CircDHTKD1 exerts a promoting influence on NSCLC glucose metabolism through PFKL upregulation. RIP and RNA pull-down showed that circDHTKD1 could bind to IGF2BP, PFKL could bind to IGF2BP2, and circDHTKD1 promoted the binding of PFKL to IGF2BP2. In addition, RT-qPCR showed that IGF2BP2 knockdown promoted PFKL mRNA degradation, suggesting that IGF2BP2 stabilized PFKL in NSCLC cells. CircDHTKD1 exhibits upregulation in NSCLC. We innovatively validate that EIF4A3-triggered circDHTKD1 upregulation facilitates NSCLC glycolysis through recruiting m6A reader IGF2BP2 to stabilize PFKL, which may provide a new direction for seeking targeted therapy plans of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Factor 4A Eucariótico de Iniciación , Regulación Neoplásica de la Expresión Génica , Glucólisis , Neoplasias Pulmonares , ARN Circular , Proteínas de Unión al ARN , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , ARN Circular/genética , ARN Circular/metabolismo , Glucólisis/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Ratones , Ratones Desnudos , Masculino , Femenino , ARN Helicasas DEAD-box
8.
BMC Genomics ; 25(1): 701, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020295

RESUMEN

BACKGROUND: Alfin-like proteins are a kind of plant-specific transcription factors, and play vital roles in plant growth, development and stress responses. RESULTS: In this study, a total of 27 Alfin-like transcription factors were identified in wheat. TaAL genes were unevenly distributed on chromosome. Phylogenetic analysis showed TaAL genes were divided into AL-B and AL-C subfamilies, and TaALs with closer evolutionary relationships generally shared more similar exon-intron structures and conserved motifs. The cis-acting element analysis showed MBS, ABRE and CGTCA-motif were the most common in TaAL promoters. The interacting proteins and downstream target genes of TaAL genes were also investigated in wheat. The transcriptome data and real-time PCR results indicated TaAL genes were differentially expressed under drought and salt stresses, and TaAL1-B was significantly up-regulated in response to drought stress. In addition, association analysis revealed that TaAL1-B-Hap-I allelic variation had significantly higher survival rate compared to TaAL1-B-Hap-II under drought stress. CONCLUSIONS: These results will provide vital information to increase our understanding of the Alfin-like gene family in wheat, and help us in breeding better wheat varieties in the future.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Triticum , Triticum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
9.
J Am Chem Soc ; 146(23): 15879-15886, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813680

RESUMEN

The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.

10.
Cancer Sci ; 115(4): 1317-1332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279512

RESUMEN

T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.


Asunto(s)
Monoterpenos Bicíclicos , Neoplasias Hematológicas , Neoplasias , Humanos , FN-kappa B/metabolismo , Linfocitos T/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular
11.
Small ; 20(27): e2311421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282177

RESUMEN

To improve ion transport kinetics and electronic conductivity between the different phases in sodium/lithium-ion battery (LIB/SIB) anodes, heterointerface engineering is considered as a promising strategy due to the strong built-in electric field. However, the lattice mismatch and defects in the interphase structure can lead to large grain boundary resistance, reducing the ion transport kinetics and electronic conductivity. Herein, monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface embedded in 3D connected Nitrogen-doped carbon yolk-shell matrix (Fe3Se4-Fe7Se8@NC) is obtained via an in situ phase transition process. Such semi-coherent heterointerface between Fe3Se4 and Fe7Se8 shows the matched interfacial lattice and strong built-in electric field, resulting in the low interface impedance and fast reaction kinetics. Moreover, the yolk-shell structure is designed to confine all monometallic selenide Fe3Se4-Fe7Se8 semi-coherent heterointerface nanoparticles, improving the structural stability and inhibiting the volume expansion effect. In particular, the 3D carbon bridge between multi-yolks shell structure improves the electronic conductivity and shortens the ion transport path. Therefore, the efficient reversible pseudocapacitance and electrochemical conversion reaction are enabled by the Fe3Se4-Fe7Se8@NC, leading to the high specific capacity of 439 mAh g-1 for SIB and 1010 mAh g-1 for LIB. This work provides a new strategy for constructing heterointerface of the anode for secondary batteries.

12.
Small ; 20(22): e2309357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102797

RESUMEN

Ensuring an appropriate nitrite level in food is essential to keep the body healthy. However, it still remains a huge challenge to offer a portable and low-cost on-site food nitrite analysis without any expensive equipment. Herein, a portable integrated electrochemical sensing system (IESS) is developed to achieve rapid on-site nitrite detection in food, which is composed of a low-cost disposable microfluidic electrochemical patch for few-shot nitrite detection, and a reusable smartphone-assisted electronic device based on self-designed circuit board for signal processing and wireless transmission. The electrochemical patch based on MXene-Ti3C2Tx/multiwalled carbon nanotubes-cyanocobalamin (MXene/MWCNTs-VB12)-modified working electrode achieves high sensitivity of 10.533 µA mm-1 and low nitrite detection limit of 4.22 µm owing to strong electron transfer ability of hybrid MXene/MWCNTs conductive matrix and high nitrite selectivity of VB12 bionic enzyme-based ion-selective layer. Moreover, the portable IESS can rapidly collect pending testing samples through a microfluidic electrochemical patch within 1.0 s to conduct immediate nitrite analysis, and then wirelessly transmit data from a signal-processing electronic device to a smartphone via Bluetooth module. Consequently, this proposed portable IESS demonstrates rapid on-site nitrite analysis and wireless data transmission within one palm-sized electronic device, which would pave a new avenue in food safety and personal bespoke therapy.


Asunto(s)
Técnicas Electroquímicas , Nitritos , Nitritos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanotubos de Carbono/química , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Electrodos , Límite de Detección , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
13.
Small ; 20(30): e2400473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412424

RESUMEN

Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.

14.
Nat Methods ; 18(7): 788-798, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127857

RESUMEN

Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.


Asunto(s)
Lisosomas/metabolismo , Metabolómica/métodos , Técnicas de Placa-Clamp , Espectrometría de Masa por Ionización de Electrospray/métodos , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Senescencia Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lidocaína/química , Lidocaína/metabolismo , Reproducibilidad de los Resultados , Relación Señal-Ruido , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
15.
J Transl Med ; 22(1): 894, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363164

RESUMEN

BACKGROUND: Ductal carcinoma in situ (DCIS) of the breast is an early stage of breast cancer, and preventing its progression to invasive ductal carcinoma (IDC) is crucial for the early detection and treatment of breast cancer. Although single-cell transcriptome analysis technology has been widely used in breast cancer research, the biological mechanisms underlying the transition from DCIS to IDC remain poorly understood. RESULTS: We identified eight cell types through cell annotation, finding significant differences in T cell proportions between DCIS and IDC. Using this as a basis, we performed pseudotime analysis on T cell subpopulations, revealing that differentially expressed genes primarily regulate immune cell migration and modulation. By intersecting WGCNA results of T cells highly correlated with the subtypes and the differentially expressed genes, we identified six key genes: FGFBP2, GNLY, KLRD1, TYROBP, PRF1, and NKG7. Excluding PRF1, the other five genes were significantly associated with overall survival in breast cancer, highlighting their potential as prognostic biomarkers. CONCLUSIONS: We identified immune cells that may play a role in the progression from DCIS to IDC and uncovered five key genes that can serve as prognostic markers for breast cancer. These findings provide insights into the mechanisms underlying the transition from DCIS to IDC, offering valuable perspectives for future research. Additionally, our results contribute to a better understanding of the biological processes involved in breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/inmunología , Carcinoma Intraductal no Infiltrante/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/inmunología , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula
16.
Hepatology ; 78(5): 1352-1367, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633260

RESUMEN

BACKGROUND AND AIMS: Nicotinamide N -methyltransferase (NNMT), an enzyme responsible for the methylation of nicotinamide, is involved in many metabolic pathways in adipose tissue and the liver. However, the role of NNMT in editing the tumor immune microenvironment is not well understood. APPROACH AND RESULTS: Here, we identified that NNMT can promote IL6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression by decreasing the tri-methyl-histone H3 levels on the promoters of IL6 and CSF2 (encoding GM-CSF) and CCAAT/Enhancer Binding Protein, an essential transcription factor for IL6 expression, thus promoting differentiation of macrophages into M2 type tumor-associated macrophages and generation of myeloid-derived suppressor cells from peripheral blood mononuclear cells. Treatment of xenografted tumor models overexpressing NNMT gallbladder carcinoma (GBC) cells with the NNMT inhibitor JBSNF-000088 resulted in compromised tumor development and decreased expression levels of IL6, GM-CSF, tumor-associated macrophage marker CD206, and myeloid-derived suppressor cell marker CD33 but increased expression levels of CD8. In addition, elevated expression of NNMT in tumors of patients with GBC was correlated with increased expression levels of CD206 and CD33 but with decreased levels of CD8 and survival of patients. CONCLUSIONS: These data highlight the critical role of NNMT in GBC progression. Inhibition of NNMT by JBSNF-000088 is a potential molecular target for GBC immunotherapy.


Asunto(s)
Neoplasias de la Vesícula Biliar , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/metabolismo , Metiltransferasas , Células Supresoras de Origen Mieloide/metabolismo , Niacinamida , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
17.
Opt Lett ; 49(19): 5567-5570, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353008

RESUMEN

In situ microscopic measurement, conducted within the natural environment of a material or device, offers precise observations directly at the sample location, mitigating potential damage or deformation during transport. However, the inherent vibration of microscopic measurement equipment can introduce blurring and distortion to images, compromising measurement accuracy. This study proposes employing an acceleration sensor to detect microprobe vibrations and subsequently calculates three-dimensional coordinate displacements to compensate for measurement discrepancies. This approach can diminish the adverse effects of vibration on measurement outcomes within the order of hundreds of nanometers. Experimental results demonstrated the efficacy of this method in mitigating vibration artifact stripes or irregularities with a displacement amplitude I = sinc2[a(z - b)] ranging from ∼0.2 to 5.2 µm and a frequency spanning ∼7.9-18.8 Hz. Moreover, the lateral resolution of the probe attained 212 nm. Notably, the measurement error associated with the standard step height was decreased from 2.32 to 0.03 µm.

18.
Exp Eye Res ; 244: 109944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797260

RESUMEN

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Autofagia , Cinamatos , Depsidos , Infecciones Fúngicas del Ojo , Macrófagos , Especies Reactivas de Oxígeno , Ácido Rosmarínico , Depsidos/farmacología , Animales , Autofagia/efectos de los fármacos , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Cinamatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Modelos Animales de Enfermedad , Células RAW 264.7 , Citocinas/metabolismo , Fagocitosis/efectos de los fármacos
19.
Exp Eye Res ; 240: 109830, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364932

RESUMEN

Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.


Asunto(s)
Aspergilosis , Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Matrinas , Animales , Ratones , Aspergillus fumigatus/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Piroptosis , Factor 2 Relacionado con NF-E2 , Queratitis/microbiología , Inflamación , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/metabolismo , Caspasa 1/metabolismo , Ratones Endogámicos C57BL
20.
Cell Mol Neurobiol ; 44(1): 16, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198062

RESUMEN

Circular RNA circSKA3 (spindle and kinetochore-related complex subunit 3) has been identified as a prognostic factor in ischemic stroke. The objective of this study was to investigate the association of circSKA3 with the risk of extracranial artery stenosis (ECAS) and plaque instability in patients with ischemic stroke. We constructed a competing endogenous RNA (ceRNA) network regulated by circSKA3 based on differentially expressed circRNAs and mRNAs between five patients and five controls. Gene Ontology (GO) analysis was performed on the 65 mRNAs within the network, revealing their primary involvement in inflammatory biological processes. A total of 284 ischemic stroke patients who underwent various imaging examinations were included for further analyses. Each 1 standard deviation increase in the log-transformed blood circSKA3 level was associated with a 56.3% increased risk of ECAS (P = 0.005) and a 142.1% increased risk of plaque instability (P = 0.005). Patients in the top tertile of circSKA3 had a 2.418-fold (P < 0.05) risk of ECAS compared to the reference group (P for trend = 0.02). CircSKA3 demonstrated a significant but limited ability to discriminate the presence of ECAS (AUC = 0.594, P = 0.015) and unstable carotid plaques (AUC = 0.647, P = 0.034). CircSKA3 improved the reclassification power for ECAS (NRI: 9.86%, P = 0.012; IDI: 2.97%, P = 0.007) and plaque instability (NRI: 36.73%, P = 0.008; IDI: 7.05%, P = 0.04) beyond conventional risk factors. CircSKA3 played an important role in the pathogenesis of ischemic stroke by influencing inflammatory biological processes. Increased circSKA3 was positively associated with the risk of ECAS and plaque instability among ischemic stroke patients.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Constricción Patológica , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/genética , Factores de Riesgo , Ontología de Genes , ARN Circular , ARN Mensajero , Arterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA