Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1947): 20210354, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33784863

RESUMEN

Traditionally, resistance and resilience are associated with good ecological health, often underpinning restoration goals. However, degraded ecosystems can also be highly resistant and resilient, making restoration difficult: degraded communities often become dominated by hyper-tolerant species, preventing recolonization and resulting in low biodiversity and poor ecosystem function. Using streams as a model, we undertook a mesocosm experiment to test if degraded community presence hindered biological recovery. We established 12 mesocosms, simulating physically healthy streams. Degraded invertebrate communities were established in half, mimicking the post-restoration scenario of physical recovery without biological recovery. We then introduced a healthy colonist community to all mesocosms, testing if degraded community presence influenced healthy community establishment. Colonists established less readily in degraded community mesocosms, with larger decreases in abundance of sensitive taxa, likely driven by biotic interactions rather than abiotic constraints. Resource depletion by the degraded community likely increased competition, driving priority effects. Colonists left by drifting, but also by accelerating development, reducing time to emergence but sacrificing larger body size. Since degraded community presence prevented colonist establishment, our experiment suggests successful restoration must address both abiotic and biotic factors, especially those that reinforce the 'negative' resistance and resilience which perpetuate degraded communities and are typically overlooked.


Asunto(s)
Ecosistema , Ríos , Animales , Biodiversidad , Invertebrados
2.
Trends Ecol Evol ; 39(6): 571-584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38388323

RESUMEN

Knowledge of ecosystem-size influences on river populations and communities is integral to the balancing of human and environmental needs for water. The multiple dimensions of dendritic river networks complicate understanding of ecosystem-size influences, but could be resolved by the development of scaling relationships. We highlight the importance of physical constraints limiting predator body sizes, movements, and population sizes in small rivers, and where river contraction limits space or creates stressful conditions affecting community stability and food webs. Investigations of the scaling and contingency of these processes will be insightful because of the underlying generality and scale independence of such relationships. Doing so will also pinpoint damaging water-management practices and identify which aspects of river size can be most usefully manipulated in river restoration.


Asunto(s)
Ecosistema , Ríos , Animales , Cadena Alimentaria , Densidad de Población , Dinámica Poblacional
3.
Ecology ; 103(1): e03545, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614210

RESUMEN

Mechanisms linked to demographic, biogeographic, and food-web processes thought to underpin community stability could be affected by habitat size, but the effects of habitat size on community stability remain relatively unknown. We investigated whether those habitat-size-dependent properties influenced community instability and vulnerability to perturbations caused by disturbance. This is particularly important given that human exploitation is contracting ecosystems, and abiotic perturbations are becoming more severe and frequent. We used a perturbation experiment in which 10 streams, spanning three orders of magnitude in habitat size, were subjected to simulated bed movement akin to a major flood disturbance event. We measured the resistance, resilience, and variability of basal resources, and population and community-level responses across the stream habitat-size gradient immediately before, and at 0.5, 5, 10, 20, and 40 d post-disturbance. Resistance to disturbance consistently increased with stream size in all response variables. In contrast, resilience was significantly higher in smaller streams for some response variables. However, this higher resilience of small ecosystems was insufficient to compensate for their lower resistance, and communities of smaller streams were thus more variable over time than those of larger streams. Compensatory dynamics of populations, especially for predators, stabilized some aspects of communities, but these mechanisms were unrelated to habitat size. Together, our results provide compelling evidence for the links between habitat size and community stability, and should motivate ecologists and managers to consider how changes in the size of habitats will alter the vulnerability of ecosystems to perturbations caused by environmental disturbance.


Asunto(s)
Biota , Ecosistema , Ríos , Inundaciones
4.
Sci Total Environ ; 671: 119-128, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30928741

RESUMEN

Excessive nutrient loading from small agricultural headwaters can substantially degrade downstream water quality and ecological conditions. But, our understanding of the scales and locations to implement nutrient attenuation tools within these catchments is poor. To help inform farm- and catchment-scale management, we quantified nitrate export in nine one-kilometre-long lowland agricultural headwaters fed by tile and open tributary drains in a region with high groundwater nitrate (<1 to >15 mg L-1 NO3-N) over four years. Across-catchment differences in upstream spring water nitrate concentrations predicted differences in annual nitrate loads at catchment outlets (range <1-72 megagrams NO3-N 365 d-1), and nitrate loads were higher in wet seasons and wet years, reflecting strong groundwater influences. Partitioning the sources of variability in catchment nitrate fluxes revealed that ~60% of variation was accounted for by a combination of fluxes from up-stream springs and contributions from tile and open tributary drains (46% and 15%, respectively), with ~40% of unexplained residual variation likely due to groundwater upwellings. Although tile and open tributary drains contributed comparatively less to catchment loads (tile drains: <0.01 and up to 50 kg NO3-N d-1; open drains: <5 kg and up to 100 kg NO3-N d-1), mitigation targeted at these localised, farm-scale sources will contribute to decreasing downstream nitrate fluxes. However, high nitrate loads from groundwater mean current NO3-N waterway management and rehabilitation practices targeting waterway stock exclusion by fencing alone will be insufficient to reduce annual NO3-N export. Moreover, managing catchment nutrient fluxes will need to acknowledge contributions from groundwater as well as farm-scale losses from land. Overall, our results highlight how nutrient fluxes in spring-fed waterways can be highly dynamic, dominated more by groundwater than local run-off, and point to the scales and locations where nitrate attenuation tools should be implemented.

5.
Sci Adv ; 4(7): eaap7523, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29978038

RESUMEN

Habitat reduction could drive biodiversity loss if the capacity of food webs to support predators is undermined by habitat-size constraints on predator body size. Assuming that (i) available space restricts predator body size, (ii) mass-specific energy needs of predators scale with their body size, and (iii) energy availability scales with prey biomass, we predicted that predator biomass per unit area would scale with habitat size (quarter-power exponent) and prey biomass (three-quarter-power exponent). We found that total predator biomass scaled with habitat size and prey resources as expected across 29 New Zealand rivers, such that a unit of habitat in a small ecosystem supported less predator biomass than an equivalent unit in a large ecosystem. The lower energetic costs of large body size likely mean that a unit of prey resource supports more biomass of large-bodied predators compared to small-bodied predators. Thus, contracting habitat size reduces the predator mass that can be supported because of constraints on predator body size, and this may be a powerful mechanism exacerbating reductions in biodiversity due to habitat loss.


Asunto(s)
Ecosistema , Conducta Predatoria/fisiología , Animales , Biodiversidad , Biomasa , Tamaño Corporal , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos , Nueva Zelanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA