Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Emerg Infect Dis ; 22(7)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27191188

RESUMEN

Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Modelos Animales de Enfermedad , Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas Virales/inmunología , Animales , Camelus , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Humanos
3.
Bioorg Med Chem Lett ; 20(6): 1994-2000, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20167488

RESUMEN

Discovery efforts were focused on identifying a non-nucleoside antiviral for treating infections caused by human cytomegalovirus (HCMV) with equal or better potency and diminished toxicity compared to current therapeutics. This Letter describes the HCMV DNA polymerase inhibition and in vitro antiviral activity of various 2-aryl-2-hydroxy ethylamine substituted 1H,7H-pyrido[1,2,3-de]quinoxaline-6-carboxamides.


Asunto(s)
Antivirales/química , Inhibidores de Proteasas/química , Quinoxalinas/química , Serina Endopeptidasas/efectos de los fármacos , Antivirales/farmacología , Diseño de Fármacos , Inhibidores de Proteasas/farmacología , Quinoxalinas/farmacología
4.
Sci Rep ; 9(1): 11103, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366927

RESUMEN

Next-generation sequencing technologies now make it possible to sequence and genotype hundreds of thousands of genetic markers across the human genome. Selection of informative markers for the comprehensive characterization of individual genomic makeup using a high dimensional genomics dataset has become a common practice in evolutionary biology and human genetics. Although several feature selection approaches exist to determine the ancestry proportion in two-way admixed populations including African Americans, there are limited statistical tools developed for the feature selection approaches in three-way admixed populations (including Latino populations). Herein, we present a new likelihood-based feature selection method called Lancaster Estimator of Independence (LEI) that utilizes allele frequency information to prioritize the most informative features useful to determine ancestry proportion from multiple ancestral populations in admixed individuals. The ability of LEI to leverage summary-level statistics from allele frequency data, thereby avoiding the many restrictions (and big data issues) that can accompany access to individual-level genotype data, is appealing to minimize the computation and time-consuming ancestry inference in an admixed population. We compared our allele-frequency based approach with genotype-based approach in estimating admixed proportions in three-way admixed population scenarios. Our results showed ancestry estimates using the top-ranked features from LEI were comparable with the estimates using features from genotype-based methods in three-way admixed population. We provide an easy-to-use R code to assist researchers in using the LEI tool to develop allele frequency-based informative features to conduct admixture mapping studies from mixed samples of multiple ancestry origin.


Asunto(s)
Frecuencia de los Genes/genética , Marcadores Genéticos/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Genotipo , Humanos , Funciones de Verosimilitud , Programas Informáticos
6.
BMC Med Genomics ; 11(1): 51, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855310

RESUMEN

BACKGROUND: Childhood asthma is a syndrome composed of heterogeneous phenotypes; furthermore, intrinsic biologic variation among racial/ethnic populations suggests possible genetic ancestry variation in childhood asthma. The objective of the study is to identify clinically homogeneous asthma subphenotypes in a diverse sample of asthmatic children and to assess subphenotype-specific genetic ancestry in African-American asthmatic children. METHODS: A total of 1211 asthmatic children including 813 in the Childhood Asthma Management Program and 398 in the Childhood Asthma Research and Education program were studied. Unsupervised cluster analysis on clinical phenotypes was conducted to identify homogeneous subphenotypes. Subphenotype-specific genetic ancestry was estimated for 167 African-American asthmatic children. Genetic ancestry association with subphenotypes/clinical phenotypes were determined. RESULTS: Three distinct subphenotypes were identified: a moderate atopic dermatitis (AD) group with negative skin prick test (SPT) and preserved lung function; a high AD group with positive SPT and airway hyperresponsiveness; and a low AD group with positive SPT and lower lung function. African ancestry at asthma genome-wide association study (GWAS) SNPs differed between subphenotypes (64, 89, and 94% for the three subphenotypes, respectively) and was inversely correlated with AD; each additional 10% increase in African ancestry was associated with 1.5 fold higher in IgE and 6.3 higher odds of positive SPT (all p-values < 0.0001). CONCLUSIONS: By conducting phenotype-based cluster analysis and assessing subphenotype-specific genetic ancestry, we were able to identify homogeneous subphenotypes for childhood asthma that showed significant variation in genetic ancestry of African-American asthmatic children. This finding demonstrates the utility of these complementary approaches to understand and refine childhood asthma subphenotypes and enable more targeted therapy.


Asunto(s)
Asma/etnología , Asma/genética , Fenotipo , África , Niño , Análisis por Conglomerados , Femenino , Humanos , Masculino
7.
J Med Chem ; 48(18): 5794-804, 2005 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16134946

RESUMEN

A novel series of 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides have been identified as potential antivirals against human herpesvirus infections resulting from human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV). Compounds 10c and 14 demonstrated broad-spectrum inhibition of the herpesvirus polymerases HCMV, HSV-1, and VZV. High specificity for the viral polymerases was observed compared to human alpha polymerase. The antiviral activity of 10c and 14, as determined by plaque reduction assay, was comparable or superior to that of existing antiherpes drugs, ganciclovir (for HCMV) and acyclovir (for HSV-1 and VZV). Drug resistance to compound 14 correlated to point mutations in conserved domain III of the herpesvirus DNA polymerase, but these mutations do not confer resistance to existing nucleoside therapy. In addition, compound 14 maintained potent antiviral activity against acyclovir-resistant HSV-1 strains. Substitution to the pyridone nitrogen (N7) was found to be critical for enhanced in vitro antiviral activity.


Asunto(s)
Antivirales/síntesis química , Citomegalovirus/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 3/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico , Piridinas/síntesis química , Piridonas/síntesis química , Tiofenos/síntesis química , Animales , Antivirales/química , Antivirales/farmacología , Línea Celular , Supervivencia Celular , Chlorocebus aethiops , Citomegalovirus/enzimología , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Viral , Exodesoxirribonucleasas/antagonistas & inhibidores , Exodesoxirribonucleasas/genética , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 3/enzimología , Humanos , Mutación Puntual , Piridinas/química , Piridinas/farmacología , Piridonas/química , Piridonas/farmacología , Relación Estructura-Actividad , Tiofenos/química , Tiofenos/farmacología , Ensayo de Placa Viral , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
8.
Antiviral Res ; 54(1): 19-28, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11888654

RESUMEN

We identified a novel class of 4-oxo-dihydroquinolines represented by PNU-183792 which specifically inhibit herpesvirus polymerases. PNU-183792 was highly active against human cytomegalovirus (HCMV, IC(50) value 0.69 microM), varicella zoster virus (VZV, IC(50) value 0.37 microM) and herpes simplex virus (HSV, IC(50) value 0.58 microM) polymerases but was inactive (IC(50) value >40 microM) against human alpha (alpha), gamma (gamma), or delta (delta) polymerases. In vitro antiviral activity against HCMV was determined using cytopathic effect, plaque reduction and virus yield reduction assays (IC(50) ranging from 0.3 to 2.4 microM). PNU-183792 antiviral activity against both VZV (IC(50) value 0.1 microM) and HSV (IC(50) ranging from 3 to 5 microM) was analyzed using plaque reduction assays. PNU-183792 was also active (IC(50) ranging 0.1-0.7 microM) in cell culture assays against simian varicella virus (SVV), murine cytomegalovirus (MCMV) and rat cytomegalovirus (RCMV). Cell culture activity was compared with the appropriate licensed drugs ganciclovir (GCV), cidofovir (CDV) and acyclovir (ACV). PNU-183792 was also active against both GCV-resistant and CDV-resistant HCMV and against ACV-resistant HSV. Toxicity assays using four different species of proliferating mammalian cells indicated PNU-183792 was not cytotoxic at relevant drug concentrations (CC(50) value >100 microM). PNU-183792 was inactive against unrelated DNA and RNA viruses indicating specificity for herpesviruses. In animals, PNU-183792 was orally bioavailable and was efficacious in a model of lethal MCMV infection.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Infecciones por Herpesviridae/tratamiento farmacológico , Herpesviridae/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico , Quinolinas/farmacología , Animales , Antivirales/química , Antivirales/farmacocinética , Línea Celular , Farmacorresistencia Viral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Herpesviridae/enzimología , Infecciones por Herpesviridae/virología , Humanos , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacocinética , Ratas , Ratas Sprague-Dawley
9.
Influenza Other Respir Viruses ; 7 Suppl 1: 76-80, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23279900

RESUMEN

Antiviral drugs continue to be an important option for the treatment of influenza disease and will likely be the only option during the early phases of pandemic. However, the limited number of drug classes licensed for treatment of influenza raises several issues, particularly in the face of drug resistance. Two classes of drugs are presently licensed for treatment of influenza, M2 and neuraminidase inhibitors. M2 inhibitors are currently not recommended for treatment of influenza because of widespread resistance and resistance to neuraminidase inhibitors has been observed during the past influenza seasonal outbreaks. Additional antiviral drugs with novel mechanisms of action are clearly needed for the treatment of influenza. Fortunately, the landscape of drugs in early and advanced development has dramatically increased over the last 5 years. Drugs targeting viral functions such as attachment, entry/fusion, transcription, and polymerase and drugs targeting host factors affecting viral replication are currently in clinical trials. Examples of these novel antiviral drugs and the challenges for influenza antiviral drug development are discussed in this article.


Asunto(s)
Antivirales/uso terapéutico , Diseño de Fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Antivirales/farmacología , Farmacorresistencia Viral , Humanos , Gripe Humana/virología , Pandemias , Estaciones del Año
10.
Bioorg Med Chem Lett ; 17(14): 3840-4, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17513108

RESUMEN

We report a new class of non-nucleoside antivirals, the 7-oxo-4,7-dihydrothieno[3,2-b]pyridine-6-carboxamides, some of which possess remarkable potency versus a broad spectrum of herpesvirus DNA polymerases and excellent selectivity compared to human DNA polymerases. A critical factor in the level of activity is hypothesized to be conformational restriction of the key 2-aryl-2-hydroxyethylamine sidechain by an adjacent methyl group.


Asunto(s)
Citomegalovirus/enzimología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores de la Síntesis del Ácido Nucleico , Piridinas/química , Piridinas/síntesis química , Piridinas/farmacología , Relación Estructura-Actividad
11.
Bioorg Med Chem Lett ; 17(12): 3349-53, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17434304
12.
Rev Med Virol ; 12(3): 167-78, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11987142

RESUMEN

While the treatment of herpes simplex virus with acyclovir and similar nucleoside analogues was one of the first success stories in antiviral chemotherapy, substantial unmet medical needs remain for herpesvirus diseases. In particular, the increasing numbers of immunosuppressed people due to AIDS, transplantation, cancer and aging has driven the need for improved antivirals to treat diseases caused by human cytomegalovirus (HCMV). Currently available drugs for the treatment of HCMV diseases are less than ideal agents due to issues of toxicity, modest efficacy and poor oral bioavailability. High throughput screening of large compound collections for inhibitors of specific viral enzymes or inhibition of viral growth in cell culture have identified a number of new HCMV inhibitors at several pharmaceutical companies. These compounds act by inhibition of novel molecular targets such as the viral protein kinase, viral protease and viral proteins involved in DNA cleavage/packaging. In addition, novel non-nucleoside inhibitors of the herpesvirus DNA polymerase have recently been described. This review will summarise some of these research efforts and will focus on non-nucleoside compounds that directly inhibit a viral process.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Herpesviridae/efectos de los fármacos , Antivirales/química , Antivirales/uso terapéutico , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Herpesviridae/enzimología , Humanos , Inhibidores de la Síntesis del Ácido Nucleico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteínas Quinasas
13.
J Virol ; 77(3): 1868-76, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12525621

RESUMEN

The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.


Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Inhibidores Enzimáticos/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Mutación , Inhibidores de la Síntesis del Ácido Nucleico , Quinolinas/farmacología , Animales , Chlorocebus aethiops , Farmacorresistencia Viral , Humanos , Células Vero
14.
Antimicrob Agents Chemother ; 46(3): 724-30, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11850254

RESUMEN

Through broad screening of the compound library at Pharmacia, a naphthalene carboxamide was identified as a nonnucleoside inhibitor of human cytomegalovirus (HCMV) polymerase. Structure-activity relationship studies demonstrated that a quinoline ring could be substituted for naphthalene, resulting in the discovery of a 4-hydroxyquinoline-3-carboxamide (4-HQC) class of antiviral agents with unique biological properties. In vitro assays with the 4-HQCs have demonstrated potent inhibition of HCMV, herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV) polymerases but no inhibition of human alpha, delta, and gamma polymerases. Antiviral cell culture assays have further confirmed that these compounds are active against HCMV, HSV-1, HSV-2, VZV, and many animal herpesviruses. However, these compounds were not active against several nonherpesviruses representing different DNA and RNA virus families. A strong correlation between the viral DNA polymerase and antiviral activity for this class of compounds supports inhibition of the viral polymerase as the mechanism of antiviral activity. Northern blot analysis of immediate-early and late viral transcripts also pointed to a block in the viral life cycle consistent with inhibition of viral DNA replication. In vitro HCMV polymerase assays indicate that the 4-HQCs are competitive inhibitors of nucleoside binding. However, no cross-resistance could be detected with ganciclovir-resistant HCMV or acyclovir-resistant HSV-1 mutants. The unique, broad-spectrum activities of the 4-HQCs may offer new opportunities for treating many of the diseases caused by herpesviruses.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Herpesviridae/efectos de los fármacos , Herpesviridae/enzimología , Hidroxiquinolinas/farmacología , Inhibidores de la Síntesis del Ácido Nucleico , Unión Competitiva/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Cinética , Relación Estructura-Actividad , Especificidad por Sustrato , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA