Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 15(6): e1008228, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220078

RESUMEN

Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.


Asunto(s)
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Células Dendríticas/metabolismo , Netrinas/genética , Neuronas/metabolismo , Citoesqueleto de Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de la Membrana/genética , Cadenas Pesadas de Miosina/genética , Proteínas del Tejido Nervioso/genética , Miosina Tipo IIB no Muscular/genética
2.
Development ; 139(18): 3316-25, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874915

RESUMEN

Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb(+)/gsb-n(+) MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Neurogénesis/genética , Neurogénesis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
3.
Genome Res ; 21(2): 325-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177967

RESUMEN

The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type. We obtained RNAs from specific cells and from each developmental stage using tissue-specific promoters to mark cells for isolation by FACS or for mRNA extraction by the mRNA-tagging method. We then generated gene expression profiles of more than 30 different cells and developmental stages using tiling arrays. Machine-learning-based analysis detected transcripts corresponding to established gene models and revealed novel transcriptionally active regions (TARs) in noncoding domains that comprise at least 10% of the total C. elegans genome. Our results show that about 75% of transcripts with detectable expression are differentially expressed among developmental stages and across cell types. Examination of known tissue- and cell-specific transcripts validates these data sets and suggests that newly identified TARs may exercise cell-specific functions. Additionally, we used self-organizing maps to define groups of coregulated transcripts and applied regulatory element analysis to identify known transcription factor- and miRNA-binding sites, as well as novel motifs that likely function to control subsets of these genes. By using cell-specific, whole-genome profiling strategies, we have detected a large number of novel transcripts and produced high-resolution gene expression maps that provide a basis for establishing the roles of individual genes in cellular differentiation.


Asunto(s)
Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Meiosis/genética , Datos de Secuencia Molecular , Oogénesis/genética , Sistemas de Lectura Abierta/genética , Transcripción Genética , Regiones no Traducidas/genética , Inactivación del Cromosoma X/genética
4.
Development ; 138(7): 1285-95, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21350018

RESUMEN

The Drosophila CNS contains a variety of glia, including highly specialized glia that reside at the CNS midline and functionally resemble the midline floor plate glia of the vertebrate spinal cord. Both insect and vertebrate midline glia play important roles in ensheathing axons that cross the midline and secreting signals that control a variety of developmental processes. The Drosophila midline glia consist of two spatially and functionally distinct populations. The anterior midline glia (AMG) are ensheathing glia that migrate, surround and send processes into the axon commissures. By contrast, the posterior midline glia (PMG) are non-ensheathing glia. Together, the Notch and hedgehog signaling pathways generate AMG and PMG from midline neural precursors. Notch signaling is required for midline glial formation and for transcription of a core set of midline glial-expressed genes. The Hedgehog morphogen is secreted from ectodermal cells adjacent to the CNS midline and directs a subset of midline glia to become PMG. Two transcription factor genes, runt and engrailed, play important roles in AMG and PMG development. The runt gene is expressed in AMG, represses engrailed and maintains AMG gene expression. The engrailed gene is expressed in PMG, represses runt and maintains PMG gene expression. In addition, engrailed can direct midline glia to a PMG-like non-ensheathing fate. Thus, two signaling pathways and runt-engrailed mutual repression initiate and maintain two distinct populations of midline glia that differ functionally in gene expression, glial migration, axon ensheathment, process extension and patterns of apoptosis.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Homeodominio/metabolismo , Neuroglía/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Inmunohistoquímica , Hibridación in Situ , Neuroglía/citología , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo
5.
Dev Biol ; 366(2): 420-32, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22537497

RESUMEN

The Drosophila Zelda transcription factor plays an important role in regulating transcription at the embryonic maternal-to-zygotic transition. However, expression of zelda continues throughout embryogenesis in cells including the developing CNS and trachea, but little is known about its post-blastoderm functions. In this paper, it is shown that zelda directly controls CNS midline and tracheal expression of the link (CG13333) gene, as well as link blastoderm expression. The link gene contains a 5' enhancer with multiple Zelda TAGteam binding sites that in vivo mutational studies show are required for link transcription. The link enhancer also has a binding site for the Single-minded:Tango and Trachealess:Tango bHLH-PAS proteins that also influences link midline and tracheal expression. These results provide an example of how a transcription factor (Single-minded or Trachealess) can interact with distinct co-regulatory proteins (Zelda or Sox/POU-homeodomain proteins) to control a similar pattern of expression of different target genes in a mechanistically different manner. While zelda and single-minded midline expression is well-conserved in Drosophila, midline expression of link is not well-conserved. Phylogenetic analysis of link expression suggests that ~60 million years ago, midline expression was nearly or completely absent, and first appeared in the melanogaster group (including D. melanogaster, D. yakuba, and D. erecta) >13 million years ago. The differences in expression are due, in part, to sequence polymorphisms in the link enhancer and likely due to altered binding of multiple transcription factors. Less than 6 million years ago, a second change occurred that resulted in high levels of expression in D. melanogaster. This change may be due to alterations in a putative Zelda binding site. Within the CNS, the zelda gene is alternatively spliced beginning at mid-embryogenesis into transcripts that encode a Zelda isoform missing three zinc fingers from the DNA binding domain. This may result in a protein with altered, possibly non-functional, DNA-binding properties. In summary, Zelda collaborates with bHLH-PAS proteins to directly regulate midline and tracheal expression of an evolutionary dynamic enhancer in the post-blastoderm embryo.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Sistema Nervioso/citología , Sistema Nervioso/embriología , Filogenia
6.
Proc Natl Acad Sci U S A ; 107(32): 14460-5, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20663955

RESUMEN

Mitochondria are key regulators of cell viability and provide essential functions that protect against neurodegenerative disease. To develop a model for mitochondrial-dependent neurodegeneration in Caenorhabditis elegans, we used RNA interference (RNAi) and genetic ablation to knock down expression of enzymes in the Coenzyme Q (CoQ) biosynthetic pathway. CoQ is a required component of the ATP-producing electron transport chain in mitochondria. We found that reduced levels of CoQ result in a progressive uncoordinated (Unc) phenotype that is correlated with the appearance of degenerating GABA neurons. Both the Unc and degenerative phenotypes emerge during late larval development and progress in adults. Neuron classes in motor and sensory circuits that use other neurotransmitters (dopamine, acetylcholine, glutamate, serotonin) and body muscle cells were less sensitive to CoQ depletion. Our results indicate that the mechanism of GABA neuron degeneration is calcium-dependent and requires activation of the apoptotic gene, ced-4 (Apaf-1). A molecular cascade involving mitochondrial-initiated cell death is also consistent with our finding that GABA neuron degeneration requires the mitochondrial fission gene, drp-1. We conclude that the cell selectivity and developmental progression of CoQ deficiency in C. elegans indicate that this model may be useful for delineating the role of mitochondrial dysfunction in neurodegenerative disease.


Asunto(s)
Calcio/metabolismo , Neuronas , Ubiquinona/fisiología , Ácido gamma-Aminobutírico , Animales , Apoptosis , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caenorhabditis elegans/fisiología , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas/etiología , Ubiquinona/deficiencia
7.
J Neurosci ; 31(43): 15362-75, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031882

RESUMEN

Although transcription factors are known to regulate synaptic plasticity, downstream genes that contribute to neural circuit remodeling are largely undefined. In Caenorhabditis elegans, GABAergic Dorsal D (DD) motor neuron synapses are relocated to new sites during larval development. This remodeling program is blocked in Ventral D (VD) GABAergic motor neurons by the COUP-TF (chicken ovalbumin upstream promoter transcription factor) homolog, UNC-55. We exploited this UNC-55 function to identify downstream synaptic remodeling genes that encode a diverse array of protein types including ion channels, cytoskeletal components, and transcription factors. We show that one of these targets, the Iroquois-like homeodomain protein, IRX-1, functions as a key regulator of remodeling in DD neurons. Our discovery of irx-1 as an unc-55-regulated target defines a transcriptional pathway that orchestrates an intricate synaptic remodeling program. Moreover, the well established roles of these conserved transcription factors in mammalian neural development suggest that a similar cascade may also control synaptic plasticity in more complex nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Sinapsis/fisiología , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero , Perfilación de la Expresión Génica/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Análisis por Micromatrices/métodos , Neuronas Motoras/metabolismo , Movimiento/fisiología , Mutación/genética , Interferencia de ARN/fisiología , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores de GABA/metabolismo , Médula Espinal/citología , Sinapsis/genética , Factores de Tiempo , Factores de Transcripción/genética , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Ácido gamma-Aminobutírico/genética
8.
Dev Biol ; 345(1): 18-33, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20537990

RESUMEN

Nociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior-lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Neuronas/metabolismo , Nociceptores/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dendritas/genética , Dendritas/metabolismo , Microscopía Confocal/métodos , Microscopía por Video/métodos , Simulación de Dinámica Molecular , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
BMC Genomics ; 9: 84, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18284693

RESUMEN

BACKGROUND: DNA microarrays provide a powerful method for global analysis of gene expression. The application of this technology to specific cell types and tissues, however, is typically limited by small amounts of available mRNA, thereby necessitating amplification. Here we compare microarray results obtained with two different methods of RNA amplification to profile gene expression in the C. elegans larval nervous system. RESULTS: We used the mRNA-tagging strategy to isolate transcripts specifically from C. elegans larval neurons. The WT-Ovation Pico System (WT-Pico) was used to amplify 2 ng of pan-neural RNA to produce labeled cDNA for microarray analysis. These WT-Pico-derived data were compared to microarray results obtained with a labeled aRNA target generated by two rounds of In Vitro Transcription (IVT) of 25 ng of pan-neural RNA. WT-Pico results in a higher fraction of present calls than IVT, a finding consistent with the proposal that DNA-DNA hybridization results in lower mismatch signals than the RNA-DNA heteroduplexes produced by IVT amplification. Microarray data sets from these samples were compared to a reference profile of all larval cells to identify transcripts with elevated expression in neurons. These results were validated by the high proportion of known neuron-expressed genes detected in these profiles and by promoter-GFP constructs for previously uncharacterized genes in these data sets. Together, the IVT and WT-Pico methods identified 2,173 unique neuron-enriched transcripts. Only about half of these transcripts (1,044), however, are detected as enriched by both IVT and WT-Pico amplification. CONCLUSION: We show that two different methods of RNA amplification, IVT and WT-Pico, produce valid microarray profiles of gene expression in the C. elegans larval nervous system with a low rate of false positives. However, our results also show that each method of RNA amplification detects a unique subset of bona fide neural-enriched transcripts and thus a wider array of authentic neural genes are identified by the combination of these data sets than by the microarray profiles obtained with either method of RNA amplification alone. With its relative ease of implementation and greater sensitivity, WT-Pico is the preferred method of amplification for cases in which sample RNA is limiting.


Asunto(s)
Caenorhabditis elegans/genética , Sistema Nervioso/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Complementario/genética , Animales , Perfilación de la Expresión Génica/métodos , Larva/metabolismo , Neuronas/metabolismo , Reproducibilidad de los Resultados
10.
Nat Neurosci ; 15(5): 731-7, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426253

RESUMEN

Dendrites from a single neuron may be highly branched but typically do not overlap. Self-avoidance behavior has been shown to depend on cell-specific membrane proteins that trigger mutual repulsion. Here we report the unexpected discovery that a diffusible cue, the axon guidance protein UNC-6 (Netrin), is required for self-avoidance of sister dendrites from the PVD nociceptive neuron in Caenorhabditis elegans. We used time-lapse imaging to show that dendrites fail to withdraw upon mutual contact in the absence of UNC-6 signaling. We propose a model in which the UNC-40 (Deleted in Colorectal Cancer; DCC) receptor captures UNC-6 at the tips of growing dendrites for interaction with UNC-5 on the apposing branch to induce mutual repulsion. UNC-40 also responds to dendritic contact through another pathway that is independent of UNC-6. Our findings offer a new model for how an evolutionarily conserved morphogenic cue and its cognate receptors can pattern a fundamental feature of dendritic architecture.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular/fisiología , Dendritas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Nociceptores/citología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Clonación Molecular , Dendritas/genética , Calor , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Modelos Moleculares , Mutación/genética , Proteínas del Tejido Nervioso/genética , Netrinas , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Tiempo , Imagen de Lapso de Tiempo
11.
Curr Biol ; 22(9): 743-52, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22483941

RESUMEN

BACKGROUND: Nociception generally evokes rapid withdrawal behavior in order to protect the tissue from harmful insults. Most nociceptive neurons responding to mechanical insults display highly branched dendrites, an anatomy shared by Caenorhabditis elegans FLP and PVD neurons, which mediate harsh touch responses. Although several primary molecular nociceptive sensors have been characterized, less is known about modulation and amplification of noxious signals within nociceptor neurons. First, we analyzed the FLP/PVD network by optogenetics and studied integration of signals from these cells in downstream interneurons. Second, we investigated which genes modulate PVD function, based on prior single-neuron mRNA profiling of PVD. RESULTS: Selectively photoactivating PVD, FLP, and downstream interneurons via Channelrhodopsin-2 (ChR2) enabled the functional dissection of this nociceptive network, without interfering signals by other mechanoreceptors. Forward or reverse escape behaviors were determined by PVD and FLP, via integration by command interneurons. To identify mediators of PVD function, acting downstream of primary nocisensor molecules, we knocked down PVD-specific transcripts by RNAi and quantified light-evoked PVD-dependent behavior. Cell-specific disruption of synaptobrevin or voltage-gated Ca(2+) channels (VGCCs) showed that PVD signals chemically to command interneurons. Knocking down the DEG/ENaC channel ASIC-1 and the TRPM channel GTL-1 indicated that ASIC-1 may extend PVD's dynamic range and that GTL-1 may amplify its signals. These channels act cell autonomously in PVD, downstream of primary mechanosensory molecules. CONCLUSIONS: Our work implicates TRPM channels in modifying excitability of and DEG/ENaCs in potentiating signal output from a mechano-nociceptor neuron. ASIC-1 and GTL-1 homologs, if functionally conserved, may denote valid targets for novel analgesics.


Asunto(s)
Canales Iónicos/metabolismo , Neuronas/citología , Neuronas/metabolismo
12.
Nat Neurosci ; 13(7): 861-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20512132

RESUMEN

Polymodal nociceptors detect noxious stimuli, including harsh touch, toxic chemicals and extremes of heat and cold. The molecular mechanisms by which nociceptors are able to sense multiple qualitatively distinct stimuli are not well understood. We found that the C. elegans PVD neurons are mulitidendritic nociceptors that respond to harsh touch and cold temperatures. The harsh touch modality specifically required the DEG/ENaC proteins MEC-10 and DEGT-1, which represent putative components of a harsh touch mechanotransduction complex. In contrast, responses to cold required the TRPA-1 channel and were MEC-10 and DEGT-1 independent. Heterologous expression of C. elegans TRPA-1 conferred cold responsiveness to other C. elegans neurons and to mammalian cells, indicating that TRPA-1 is a cold sensor. Our results suggest that C. elegans nociceptors respond to thermal and mechanical stimuli using distinct sets of molecules and identify DEG/ENaC channels as potential receptors for mechanical pain.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Canales Epiteliales de Sodio/fisiología , Mecanotransducción Celular/fisiología , Nociceptores/fisiología , Canales de Sodio/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/clasificación , Transducción de Señal/fisiología , Sensación Térmica/fisiología , Tacto/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo
13.
Genome Biol ; 8(7): R135, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17612406

RESUMEN

BACKGROUND: With its fully sequenced genome and simple, well-defined nervous system, the nematode Caenorhabditis elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and, thereby, link comprehensive profiles of neuronal transcription to key developmental and functional properties of the nervous system. RESULTS: We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Microarray Profiling C. elegans cells) method, we used fluorescence activated cell sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (for example, transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. Of particular interest are 19 conserved transcripts of unknown function that are also expressed in the mammalian brain. In addition to utilizing these profiling approaches to define stage-specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type. CONCLUSION: We describe microarray-based strategies for generating expression profiles of embryonic and larval C. elegans neurons. These methods can be applied to particular neurons at specific developmental stages and, therefore, provide an unprecedented opportunity to obtain spatially and temporally defined snapshots of gene expression in a simple model nervous system.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Expresión Génica , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Animales , Perfilación de la Expresión Génica , Neuronas Motoras/metabolismo , Neuronas Aferentes/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Transmisión Sináptica/genética
14.
Genome Biol ; 8(9): R188, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17848203

RESUMEN

BACKGROUND: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also found in animals with more complex body plans. To this end, we applied microarray profiling of Caenorhabtidis elegans cells (MAPCeL) to muscle cell populations extracted from developing C. elegans embryos. RESULTS: We used fluorescence-activated cell sorting to isolate myo-3::green fluorescent protein (GFP) positive muscle cells, and their cultured derivatives, from dissociated early C. elegans embryos. Microarray analysis identified 7,070 expressed genes, 1,312 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle enriched gene set was validated by comparisons with known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type specific expression profiling and reveal that 60% of these transcripts have human homologs. CONCLUSION: This study provides a comprehensive description of gene expression in developing C. elegans embryonic muscle cells. The finding that more than half of these muscle enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in C. elegans could reveal evolutionarily conserved models of muscle gene function, with ready application to human muscle pathologies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Animales , Separación Celular , Biología Computacional , Distrofina/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Contracción Muscular , Unión Neuromuscular/metabolismo , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA