Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Annu Rev Immunol ; 31: 443-73, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23298205

RESUMEN

T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Transducción de Señal/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Tolerancia Inmunológica , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
2.
J Immunol ; 198(5): 2028-2037, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122965

RESUMEN

Mycobacterium tuberculosis utilizes multiple mechanisms to evade host immune responses, and inhibition of effector CD4+ T cell responses by M. tuberculosis may contribute to immune evasion. TCR signaling is inhibited by M. tuberculosis cell envelope lipoglycans, such as lipoarabinomannan and lipomannan, but a mechanism for lipoglycans to traffic from M. tuberculosis within infected macrophages to reach T cells is unknown. In these studies, we found that membrane vesicles produced by M. tuberculosis and released from infected macrophages inhibited the activation of CD4+ T cells, as indicated by reduced production of IL-2 and reduced T cell proliferation. Flow cytometry and Western blot demonstrated that lipoglycans from M. tuberculosis-derived bacterial vesicles (BVs) are transferred to T cells, where they inhibit T cell responses. Stimulation of CD4+ T cells in the presence of BVs induced expression of GRAIL, a marker of T cell anergy; upon restimulation, these T cells showed reduced ability to proliferate, confirming a state of T cell anergy. Furthermore, lipoarabinomannan was associated with T cells after their incubation with infected macrophages in vitro and when T cells were isolated from lungs of M. tuberculosis-infected mice, confirming the occurrence of lipoarabinomannan trafficking to T cells in vivo. These studies demonstrate a novel mechanism for the direct regulation of CD4+ T cells by M. tuberculosis lipoglycans conveyed by BVs that are produced by M. tuberculosis and released from infected macrophages. These lipoglycans are transferred to T cells to inhibit T cell responses, providing a mechanism that may promote immune evasion.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Evasión Inmune , Pulmón/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Vesículas Secretoras/microbiología , Tuberculosis/inmunología , Animales , Proliferación Celular , Células Cultivadas , Anergia Clonal , Femenino , Humanos , Lipopolisacáridos/inmunología , Pulmón/microbiología , Activación de Linfocitos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/inmunología
3.
Immunity ; 30(1): 21-32, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19119025

RESUMEN

Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 A resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Péptidos/inmunología , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/química , Animales , Línea Celular , Cristalografía por Rayos X , Dimerización , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Estructura Cuaternaria de Proteína
5.
J Immunol ; 195(3): 1044-53, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109643

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected cells.


Asunto(s)
Exosomas/metabolismo , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Vesículas Secretoras/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Células Cultivadas , Exosomas/inmunología , Lipopolisacáridos/inmunología , Lipoproteínas/inmunología , Pulmón/citología , Pulmón/inmunología , Macrófagos Alveolares/microbiología , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 2/metabolismo , Tuberculosis Pulmonar/microbiología
6.
PLoS Pathog ; 10(10): e1004471, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25356793

RESUMEN

Mycobacterium tuberculosis (Mtb) virulence is decreased by genetic deletion of the lipoprotein LprG, but the function of LprG remains unclear. We report that LprG expressed in Mtb binds to lipoglycans, such as lipoarabinomannan (LAM), that mediate Mtb immune evasion. Lipoglycan binding to LprG was dependent on both insertion of lipoglycan acyl chains into a hydrophobic pocket on LprG and a novel contribution of lipoglycan polysaccharide components outside of this pocket. An lprG null mutant (Mtb ΔlprG) had lower levels of surface-exposed LAM, revealing a novel role for LprG in determining the distribution of components in the Mtb cell envelope. Furthermore, this mutant failed to inhibit phagosome-lysosome fusion, an immune evasion strategy mediated by LAM. We propose that LprG binding to LAM facilitates its transfer from the plasma membrane into the cell envelope, increasing surface-exposed LAM, enhancing cell envelope integrity, allowing inhibition of phagosome-lysosome fusion and enhancing Mtb survival in macrophages.


Asunto(s)
Lipopolisacáridos/metabolismo , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Fagosomas/metabolismo , Tuberculosis/microbiología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Lipopolisacáridos/genética , Lipoproteínas/genética , Macrófagos/inmunología , Fusión de Membrana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Virulencia
7.
Infect Immun ; 83(6): 2242-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25776754

RESUMEN

Mycobacterium tuberculosis survives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrict M. tuberculosis to latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by which M. tuberculosis modulates host responses to promote its survival remain unclear. In these studies, we demonstrate that M. tuberculosis induction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion of Tpl2 blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate that M. tuberculosis regulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway in Tpl2(-/-) macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4(+) T cells responding to M. tuberculosis infection. These data indicate that M. tuberculosis and its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Células TH1/fisiología , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación de la Expresión Génica/fisiología , Genes MHC Clase II/genética , Genes MHC Clase II/fisiología , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Transducción de Señal , Receptor Toll-Like 2
8.
Eur J Immunol ; 44(5): 1410-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24497180

RESUMEN

We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/inmunología , Receptor Toll-Like 2/inmunología , Tuberculosis/inmunología , Aciltransferasas/biosíntesis , Aciltransferasas/genética , Aciltransferasas/inmunología , Aciltransferasas/farmacología , Animales , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/farmacología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Homólogo de la Proteína Chromobox 5 , Humanos , Inmunización , Interferón gamma/biosíntesis , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Receptor Toll-Like 2/biosíntesis , Receptor Toll-Like 2/genética , Tuberculosis/genética , Tuberculosis/metabolismo , Tuberculosis/patología , Tuberculosis/prevención & control
9.
J Immunol ; 188(7): 3116-26, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22371391

RESUMEN

Microbial molecules or cytokines can stimulate dendritic cell (DC) maturation, which involves DC migration to lymph nodes and enhanced presentation of Ag to launch T cell responses. Microbial TLR agonists are the most studied inducers of DC maturation, but type I IFN (IFN-I) also promotes DC maturation. In response to TLR stimulation, DC maturation involves a burst of Ag processing with enhanced expression of peptide-class II MHC complexes and costimulator molecules. Subsequently, class II MHC (MHC-II) synthesis and expression in intracellular vacuolar compartments is inhibited, decreasing Ag processing function. This limits presentation to a cohort of Ags kinetically associated with the maturation stimulus and excludes presentation of Ags subsequently experienced by the DC. In contrast, our studies show that IFN-I enhances DC expression of MHC-II and costimulatory molecules without a concomitant inhibition of subsequent MHC-II synthesis and Ag processing. Expression of mRNA for MHC-II and the transcription factor CIITA is inhibited in DCs treated with TLR agonists but maintained in cells treated with IFN-I. After stimulation with IFN-I, MHC-II expression is increased on the plasma membrane but is also maintained in intracellular vacuolar compartments, consistent with sustained Ag processing function. These findings suggest that IFN-I drives a distinctive DC maturation program that enhances Ag presentation to T cells without a shutdown of Ag processing, allowing continued sampling of Ags for presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/citología , Antígenos de Histocompatibilidad Clase II/biosíntesis , Interferón Tipo I/fisiología , Adyuvantes Inmunológicos/farmacología , Animales , Diferenciación Celular , Células Dendríticas/efectos de los fármacos , Endocitosis , Regulación de la Expresión Génica/inmunología , Genes MHC Clase II , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interferón Tipo I/farmacología , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Fenotipo , Proteínas Recombinantes/farmacología , Inhibidores de la Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Receptores Toll-Like/agonistas , Transactivadores/biosíntesis , Transactivadores/genética
10.
Proc Natl Acad Sci U S A ; 108(12): 4950-5, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383180

RESUMEN

In this study we sought to better understand the role of the glycoprotein quality control machinery in the assembly of MHC class I molecules with high-affinity peptides. The lectin-like chaperone calreticulin (CRT) and the thiol oxidoreductase ERp57 participate in the final step of this process as part of the peptide-loading complex (PLC). We provide evidence for an MHC class I/CRT intermediate before PLC engagement and examine the nature of that chaperone interaction in detail. To investigate the mechanism of peptide loading and roles of individual components, we reconstituted a PLC subcomplex, excluding the Transporter Associated with Antigen Processing, from purified, recombinant proteins. ERp57 disulfide linked to the class I-specific chaperone tapasin and CRT were the minimal PLC components required for MHC class I association and peptide loading. Mutations disrupting the interaction of CRT with ERp57 or the class I glycan completely eliminated PLC activity in vitro. By using the purified system, we also provide direct evidence for a role for UDP-glucose:glycoprotein glucosyltransferase 1 in MHC class I assembly. The recombinant Drosophila enzyme reglucosylated MHC class I molecules associated with suboptimal ligands and allowed PLC reengagement and high-affinity peptide exchange. Collectively, the data indicate that CRT in the PLC enhances weak tapasin/class I interactions in a manner that is glycan-dependent and regulated by UDP-glucose:glycoprotein glucosyltransferase 1.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Polisacáridos/inmunología , Animales , Calreticulina/genética , Calreticulina/inmunología , Calreticulina/metabolismo , Línea Celular , Drosophila melanogaster , Glucosiltransferasas/genética , Glucosiltransferasas/inmunología , Glucosiltransferasas/metabolismo , Glicosilación , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/inmunología , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(12): 4956-61, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383159

RESUMEN

UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) serves as a folding sensor in the calnexin/calreticulin glycoprotein quality control cycle. UGT1 recognizes disordered or hydrophobic patches near asparagine-linked nonglucosylated glycans in partially misfolded glycoproteins and reglucosylates them, returning folding intermediates to the cycle. In this study, we examine the contribution of the UGT1-regulated quality control mechanism to MHC I antigen presentation. Using UGT1-deficient mouse embryonic fibroblasts reconstituted or not with UGT1, we show that, although formation of the peptide loading complex is unaffected by the absence of UGT1, the surface level of MHC class I molecules is reduced, MHC class I maturation and assembly are delayed, and peptide selection is impaired. Most strikingly, we show using purified soluble components that UGT1 preferentially recognizes and reglucosylates MHC class I molecules associated with a suboptimal peptide. Our data suggest that, in addition to the extensively studied tapasin-mediated quality control mechanism, UGT1 adds a new level of control in the MHC class I antigen presentation pathway.


Asunto(s)
Presentación de Antígeno/inmunología , Regulación de la Expresión Génica/inmunología , Glucosiltransferasas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Pliegue de Proteína , Animales , Presentación de Antígeno/genética , Línea Celular , Regulación de la Expresión Génica/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Antígenos de Histocompatibilidad Clase I/biosíntesis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Mutantes , Péptidos/genética , Péptidos/metabolismo
12.
Front Immunol ; 11: 906, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582143

RESUMEN

Alistipes is a relatively new genus of bacteria isolated primarily from medical clinical samples, although at a low rate compared to other genus members of the Bacteroidetes phylum, which are highly relevant in dysbiosis and disease. According to the taxonomy database at The National Center for Biotechnology Information, the genus consists of 13 species: Alistipes finegoldii, Alistipes putredinis, Alistipes onderdonkii, Alistipes shahii, Alistipes indistinctus, Alistipes senegalensis, Alistipes timonensis, Alistipes obesi, Alistipes ihumii, Alistipes inops, Alistipes megaguti, Alistipes provencensis, and Alistipes massiliensis. Alistipes communis and A. dispar, and the subspecies A. Onderdonkii subspecies vulgaris (vs. onderdonkii subsp.) are the newest strains featured outside that list. Although typically isolated from the human gut microbiome various species of this genus have been isolated from patients suffering from appendicitis, and abdominal and rectal abscess. It is possible that as Alistipes spp. emerge, their identification in clinical samples may be underrepresented as novel MS-TOF methods may not be fully capable to discriminate distinct species as separate since it will require the upgrading of MS-TOF identification databases. In terms of pathogenicity, there is contrasting evidence indicating that Alistipes may have protective effects against some diseases, including liver fibrosis, colitis, cancer immunotherapy, and cardiovascular disease. In contrast, other studies indicate Alistipes is pathogenic in colorectal cancer and is associated with mental signs of depression. Gut dysbiosis seems to play a role in determining the compositional abundance of Alistipes in the feces (e.g., in non-alcoholic steatohepatitis, hepatic encephalopathy, and liver fibrosis). Since Alistipes is a relatively recent sub-branch genus of the Bacteroidetes phylum, and since Bacteroidetes are commonly associated with chronic intestinal inflammation, this narrative review illustrates emerging immunological and mechanistic implications by which Alistipes spp. correlate with human health.


Asunto(s)
Bacteroidetes/patogenicidad , Microbioma Gastrointestinal , Inflamación/microbiología , Intestinos/microbiología , Trastornos Mentales/microbiología , Neoplasias/microbiología , Animales , Bacteroidetes/clasificación , Bacteroidetes/metabolismo , Disbiosis , Interacciones Huésped-Patógeno , Humanos , Inflamación/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/psicología , Salud Mental , Neoplasias/metabolismo
13.
Diagn Cytopathol ; 46(9): 730-738, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30043412

RESUMEN

Plexiform fibromyxoma (PF) is a recently-described and rare mesenchymal neoplasm of the gastric wall. A few small case series reports of this spindle cell entity exist in the surgical pathology literature, but to our knowledge no prior endoscopic ultrasound guided fine needle aspiration cytology examples have been reported. In clinical practice, mural gastrointestinal (GI) lesions are often initially evaluated by endoscopic ultrasound guided (EUS) fine needle aspiration (FNA). In addition, newer EUS fine needle biopsy techniques also allow for reliable retrieval of core tissue samples with intact cellular architecture, making EUS histopathologic analyses possible. We report a combined EUS FNA and core biopsy case of PF and correlate the findings with imaging results. The cytomorphology of PF is described and illustrated, and important entities in the differential diagnosis of upper GI spindle cell lesions (including GI stromal tumor, leiomyoma, schwannoma, carcinoid tumor, desmoid-type fibromatosis, and inflammatory fibroid polyp) are reviewed. Illustrated examples of relevant cytomorphologic, cell block histomorphologic and immunohistochemical characteristics are emphasized.


Asunto(s)
Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Fibroma/diagnóstico , Fibroma/patología , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/patología , Tracto Gastrointestinal Superior/patología , Anciano de 80 o más Años , Femenino , Fibroma/diagnóstico por imagen , Neoplasias Gastrointestinales/diagnóstico por imagen , Humanos , Tracto Gastrointestinal Superior/diagnóstico por imagen
14.
Front Cell Dev Biol ; 4: 125, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891500

RESUMEN

The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50-250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb), an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may modulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote Major Histocompatibility Complex (MHC) class II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection.

15.
Methods Mol Biol ; 960: 67-79, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23329479

RESUMEN

The stability of the MHC (major histocompatibility complex) class I peptide repertoire is optimized during assembly in the endoplasmic reticulum (ER) and depends on the collective function of components of the peptide-loading complex (PLC). The chaperone-like molecule tapasin is the cornerstone of this complex and acts directly on the MHC class I molecule to promote high-affinity peptide loading. Optimal tapasin activity, however, relies on the ability of ERp57 and calreticulin, two proteins involved in general ER glycoprotein folding, to bridge and thereby stabilize its otherwise weak interaction with the MHC class I heavy chain. Here, we describe methods for the recombinant expression of soluble components of the PLC specifically tailored to generate the post-translational modifications required to support subcomplex assembly in vitro. Using recombinant MHC class I molecules bearing monoglucosylated N-linked glycans, calreticulin, and disulfide-linked tapasin/ERp57 heterodimers, this soluble PLC subcomplex can be employed to study the mechanism of peptide loading or the principles governing peptide selection for particular MHC class I alleles.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Baculoviridae/genética , Calreticulina/química , Calreticulina/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoprecipitación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Células Sf9 , Solubilidad , Spodoptera
16.
Curr Opin Cell Biol ; 20(6): 624-31, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18926908

RESUMEN

The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/inmunología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
17.
Nat Immunol ; 8(8): 873-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603487

RESUMEN

Major histocompatibility complex (MHC) class I glycoproteins bind peptides in the endoplasmic reticulum after incorporation into the peptide-loading complex, whose core is the transporter associated with antigen processing. Other components are the chaperone calreticulin, the thiol oxidoreductase ERp57, and tapasin. Tapasin and ERp57 have been shown to exist in the peptide-loading complex as a disulfide-linked heterodimer. Here, using a cell-free system, we demonstrate that although recombinant tapasin was ineffective in recruiting MHC class I molecules and facilitating peptide binding, recombinant tapasin-ERp57 conjugates accomplished both of those functions and also 'edited' the repertoire of bound peptides to maximize their affinity. Thus, the tapasin-ERp57 conjugate is the functional unit of the peptide-loading complex that generates MHC class I molecules with stably associated peptides.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Péptidos/inmunología , Proteína Disulfuro Isomerasas/metabolismo , Animales , Sistema Libre de Células , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/inmunología , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
18.
EMBO J ; 24(20): 3613-23, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16193070

RESUMEN

We previously showed that the major histocompatibility complex (MHC) class I chaperone tapasin can be detected as a mixed disulfide with the thiol-oxidoreductase ERp57. Here we show that tapasin is a unique and preferred substrate, a substantial majority of which is disulfide-linked to ERp57 within the cell. Tapasin upregulation by interferon-gamma induces sequestration of the vast majority of ERp57 into the MHC class I peptide-loading complex. The rate of tapasin-ERp57 conjugate formation is unaffected by the absence of beta2-microglubulin (beta2m), and is independent of calnexin or calreticulin interactions with monoglucosylated N-linked glycans. The heterodimer forms spontaneously in vitro upon mixing recombinant ERp57 and tapasin. Noncovalent interactions between the native proteins inhibit the reductase activity of the thioredoxin CXXC motif within the N-terminal a domain of ERp57 to maintain its interaction with tapasin. Disruption of these interactions by denaturation allows reduction to proceed. Thus, tapasin association specifically inhibits the escape pathway required for disulfide-bond isomerization within conventional protein substrates, suggesting a specific structural role for ERp57 within the MHC class I peptide-loading complex.


Asunto(s)
Antiportadores/metabolismo , Disulfuros/metabolismo , Proteínas de Choque Térmico/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Línea Celular , Dimerización , Humanos , Proteínas de Transporte de Membrana , Oxidación-Reducción , Oxidorreductasas/metabolismo , Péptidos/metabolismo , Polisacáridos/metabolismo , Desnaturalización Proteica , Estructura Terciaria de Proteína , Microglobulina beta-2/metabolismo
19.
Immunol Rev ; 207: 145-57, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16181333

RESUMEN

In this review, we discuss recent data from our laboratory that address two aspects of major histocompatibility complex (MHC) class I-restricted antigen processing. First, we consider the nature of the peptide-loading complex, which is the assembly of proteins in the endoplasmic reticulum (ER) into which newly synthesized MHC class I-beta(2) microglobulin (beta(2)m) heterodimers are incorporated, and the mechanisms involved in MHC class I assembly and peptide loading that are facilitated by the peptide-loading complex. Second, we discuss mechanisms of cross-presentation, the phenomenon whereby extracellular and luminal protein antigens can be processed by antigen-presenting cells, particularly dendritic cells, and presented by MHC class I molecules to CD8(+) T cells. The focus of the discussion is mainly on the human MHC class I system.


Asunto(s)
Presentación de Antígeno/inmunología , Reactividad Cruzada/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Modelos Inmunológicos , Animales , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Humanos , Péptidos/inmunología , Péptidos/metabolismo
20.
J Biol Chem ; 279(24): 25112-21, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15056662

RESUMEN

The assembly of major histocompatibility complex (MHC) class I molecules with peptides in the endoplasmic reticulum (ER) is a critical step in the presentation of viral antigens to CD8+ T cells. This process is subject to quality control restrictions that prevent free class I heavy chains (HCs) and peptide-free HC-beta(2)-microglobulin (beta(2)m) dimers from exiting the ER. The lectin-like chaperone calreticulin associates with HC-beta(2)m heterodimers prior to peptide binding, but its precise role in regulating the subsequent events of peptide association and ER to Golgi transport remains undefined. In vitro analysis of the assembly process has been limited by the specificity of calreticulin for monoglucosylated N-linked glycans, which are transient biosynthetic intermediates. To address this problem, we developed a novel expression system using Saccharomyces cerevisiae glycosylation mutants to produce class I HC bearing N-linked oligosaccharides with the specific structure Glc(1)Man(9)GlcNAc(2). The monoglucosylated glycan proved to be both necessary and sufficient for in vitro binding of calreticulin to MHC class I molecules. Calreticulin bound as efficiently to peptide-loaded MHC class I complexes as it did to folding intermediates created in vitro, namely free class I HC and empty HC-beta(2)m heterodimers. Thus, calreticulin is unable to discriminate between native and non-native MHC class I conformations and therefore unlikely to play a role in the recognition and release of peptide-loaded complexes from the ER. Furthermore, the recombinant expression system developed in this study can be used to produce a broad range of calreticulin substrates to elucidate its general mechanism of activity in vitro.


Asunto(s)
Calreticulina/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Polisacáridos/metabolismo , Calnexina/metabolismo , Glicosilación , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/aislamiento & purificación , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA