Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 37(22): 5574-5586, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28416596

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Neuronas Motoras/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transcriptoma/genética
2.
Nat Biomed Eng ; 7(10): 1252-1269, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37106153

RESUMEN

Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.

3.
Nat Protoc ; 17(4): 1073-1096, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35173306

RESUMEN

Wireless battery-free optogenetic devices enable behavioral neuroscience studies in groups of animals with minimal interference to natural behavior. Real-time independent control of optogenetic stimulation through near-field communication dramatically expands the realm of applications of these devices in broad contexts of neuroscience research. Dissemination of these tools with advanced functionalities to the neuroscience community requires protocols for device manufacturing and experimental implementation. This protocol describes detailed procedures for fabrication, encapsulation and implantation of recently developed advanced wireless devices in head- and back-mounted forms. In addition, procedures for standard implementation of experimental systems in mice are provided. This protocol aims to facilitate the application of wireless optogenetic devices in advanced optogenetic experiments involving groups of freely moving rodents and complex environmental designs. The entire protocol lasts ~3-5 weeks.


Asunto(s)
Neurociencias , Optogenética , Animales , Ratones , Optogenética/métodos , Tecnología Inalámbrica
4.
Front Behav Neurosci ; 15: 780190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955780

RESUMEN

Animal models have been utilized to explore the mechanisms by which mood disorders develop. Ethologically based stress paradigms are used to induce behavioral responses consistent with those observed in humans suffering from anxiety and depression. While mood disorders are more often diagnosed in women, animal studies are more likely to be carried out in male rodents. However, understanding the mechanisms behind anxiety- and depressive-like behaviors in both sexes is necessary to increase the predictive and construct validity of the models and identify therapeutic targets. To understand sex differences following stress, we must consider how all cell types within the central nervous system are influenced by the neuroendocrine system. This review article discusses the effects of stress and sex steroids on the macroglia: astrocytes and oligodendrocytes. Glia are involved in shaping the synapse through the regulation of neurotransmitter levels and energy resources, making them essential contributors to neural dynamics following stress. As the role of glia in neuromodulation has become more apparent, studies exploring the mechanisms by which glia are altered by stress and steroids will provide insight into sex differences in animal models. These insights will facilitate the optimization of animal models of psychiatric disorders and development of future therapeutic targets.

5.
Nat Neurosci ; 24(7): 1035-1045, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33972800

RESUMEN

Advanced technologies for controlled delivery of light to targeted locations in biological tissues are essential to neuroscience research that applies optogenetics in animal models. Fully implantable, miniaturized devices with wireless control and power-harvesting strategies offer an appealing set of attributes in this context, particularly for studies that are incompatible with conventional fiber-optic approaches or battery-powered head stages. Limited programmable control and narrow options in illumination profiles constrain the use of existing devices. The results reported here overcome these drawbacks via two platforms, both with real-time user programmability over multiple independent light sources, in head-mounted and back-mounted designs. Engineering studies of the optoelectronic and thermal properties of these systems define their capabilities and key design considerations. Neuroscience applications demonstrate that induction of interbrain neuronal synchrony in the medial prefrontal cortex shapes social interaction within groups of mice, highlighting the power of real-time subject-specific programmability of the wireless optogenetic platforms introduced here.


Asunto(s)
Optogenética/instrumentación , Conducta Social , Tecnología Inalámbrica/instrumentación , Animales , Ratones
6.
J Clin Invest ; 128(8): 3558-3567, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010620

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS. Although the clinical trial provided encouraging safety data, the drug was not advanced because there was progress in designing other, more potent ASOs for CNS application. We have developed next-generation SOD1 ASOs that more potently reduce SOD1 mRNA and protein and extend survival by more than 50 days in SOD1G93A rats and by almost 40 days in SOD1G93A mice. We demonstrated that the initial loss of compound muscle action potential in SOD1G93A mice is reversed after a single dose of SOD1 ASO. Furthermore, increases in serum phospho-neurofilament heavy chain levels, a promising biomarker for ALS, are stopped by SOD1 ASO therapy. These results define a highly potent, new SOD1 ASO ready for human clinical trial and suggest that at least some components of muscle response can be reversed by therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Músculo Esquelético/enzimología , Oligodesoxirribonucleótidos Antisentido/farmacología , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Humanos , Músculo Esquelético/patología , Oligodesoxirribonucleótidos Antisentido/genética , Ratas , Ratas Transgénicas , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
7.
Sci Transl Med ; 9(374)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123067

RESUMEN

Accumulation of hyperphosphorylated tau directly correlates with cognitive decline in Alzheimer's disease and other primary tauopathies. One therapeutic strategy may be to reduce total tau expression. We identified antisense oligonucleotides (ASOs) that selectively decreased human tau mRNA and protein in mice expressing mutant P301S human tau. After reduction of human tau in this mouse model of tauopathy, fewer tau inclusions developed, and preexisting phosphorylated tau and Thioflavin S pathology were reversed. The resolution of tau pathology was accompanied by the prevention of hippocampal volume loss, neuronal death, and nesting deficits. In addition, mouse survival was extended, and pathological tau seeding was reversed. In nonhuman primates, tau ASOs distributed throughout the brain and spinal cord and reduced tau mRNA and protein in the brain, spinal cord, and cerebrospinal fluid. These data support investigation of a tau-lowering therapy in human patients who have tau-positive inclusions even after pathological tau deposition has begun.


Asunto(s)
Neuronas/metabolismo , Oligonucleótidos Antisentido/farmacología , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Supervivencia Celular , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Macaca fascicularis , Ratones , Ratones Transgénicos , Fosforilación , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA