Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Comput Biol ; 17(11): e1009595, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767547

RESUMEN

Sudden changes in visual scenes often indicate important events for behavior. For their quick and reliable detection, the brain must be capable to process these changes as independently as possible from its current activation state. In motion-selective area MT, neurons respond to instantaneous speed changes with pronounced transients, often far exceeding the expected response as derived from their speed tuning profile. We here show that this complex, non-linear behavior emerges from the combined temporal dynamics of excitation and divisive inhibition, and provide a comprehensive mathematical analysis. A central prediction derived from this investigation is that attention increases the steepness of the transient response irrespective of the activation state prior to a stimulus change, and irrespective of the sign of the change (i.e. irrespective of whether the stimulus is accelerating or decelerating). Extracellular recordings of attention-dependent representation of both speed increments and decrements confirmed this prediction and suggest that improved change detection derives from basic computations in a canonical cortical circuitry.


Asunto(s)
Haplorrinos/fisiología , Corteza Visual/fisiología , Animales , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual/citología
2.
J Neurophysiol ; 122(4): 1634-1648, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31412218

RESUMEN

Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks.NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.


Asunto(s)
Potenciales Evocados Visuales , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Duramadre/fisiología , Electrodos Implantados , Macaca mulatta , Aprendizaje Automático , Masculino , Curva ROC , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
3.
J Neurophysiol ; 120(1): 115-128, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617217

RESUMEN

Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal's response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal's motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.


Asunto(s)
Cognición , Esquema de Refuerzo , Recompensa , Animales , Condicionamiento Psicológico/fisiología , Macaca mulatta , Masculino
4.
J Neurophysiol ; 118(3): 1542-1555, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28659459

RESUMEN

Nonspatially selective attention is based on the notion that specific features or objects in the visual environment are effectively prioritized in cortical visual processing. Feature-based attention (FBA), in particular, is a well-studied process that dynamically and selectively addresses neurons preferentially processing the attended feature attribute (e.g., leftward motion). In everyday life, however, behavior may require high sensitivity for an entire feature dimension (e.g., motion), but experimental evidence for a feature dimension-specific attentional modulation on a cellular level is lacking. Therefore, we investigated neuronal activity in macaque motion-selective mediotemporal area (MT) in an experimental setting requiring the monkeys to detect either a motion change or a color change. We hypothesized that neural activity in MT is enhanced when the task requires perceptual sensitivity to motion. In line with this, we found that mean firing rates were higher in the motion task and that response variability and latency were lower compared with values in the color task, despite identical visual stimulation. This task-specific, dimension-based modulation of motion processing emerged already in the absence of visual input, was independent of the relation between the attended and stimulating motion direction, and was accompanied by a spatially global reduction of neuronal variability. The results provide single-cell support for the hypothesis of a feature dimension-specific top-down signal emphasizing the processing of an entire feature class.NEW & NOTEWORTHY Cortical processing serving visual perception prioritizes information according to current task requirements. We provide evidence in favor of a dimension-based attentional mechanism addressing all neurons that process visual information in the task-relevant feature domain. Behavioral tasks required monkeys to attend either color or motion, causing modulations of response strength, variability, latency, and baseline activity of motion-selective monkey area MT neurons irrespective of the attended motion direction but specific to the attended feature dimension.


Asunto(s)
Atención , Percepción de Movimiento , Lóbulo Temporal/fisiología , Animales , Macaca mulatta , Masculino , Neuronas/fisiología , Lóbulo Temporal/citología
5.
J Neurophysiol ; 113(3): 890-903, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25392161

RESUMEN

Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input.


Asunto(s)
Desempeño Psicomotor , Tiempo de Reacción , Lóbulo Temporal/fisiología , Potenciales de Acción , Animales , Macaca mulatta , Masculino , Neuronas/fisiología , Lóbulo Temporal/citología
6.
J Vis ; 15(8): 8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114671

RESUMEN

In human and nonhuman primates, goal-directed behavior requires the selection of relevant pieces of information from the multitude of simultaneous sensory inputs. Feature-based attention (FBA) plays a crucial role in this selection by improving the neuronal representation of an attended stimulus feature. Of particular interest for understanding the neuronal mechanisms behind FBA is the processing fate of spatially unattended stimuli, either sharing the attended feature attribute or belonging to the attended or to a nonattended feature dimension. Using a wide range of cue/stimulus combinations, we investigated event-related potentials from the human brain, recorded under conditions of different feature attention but constant visual stimulation. We found that neural processing of visual stimuli sharing the dimension or the attribute of the attended target is associated with two distinct spatiotemporal processes, particularly prominent during the selection negativity period. Dimension-based modulation of neural signals first emerged over frontal electrode sites, and temporally preceded and accompanied attribute-specific FBA effects at occipital, parieto-occipital, and parietal electrodes. The findings suggest a process of FBA that not only increases responses of those neurons particularly tuned to the attended attribute but also modulates activity in the cortical module that is selective for the feature dimension to which the attended attribute belongs.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Análisis Espacio-Temporal , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Potenciales Evocados , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
7.
Sci Rep ; 13(1): 3274, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841887

RESUMEN

The availability of effective vaccines and a high vaccination rate allowed the recent mitigation, or even withdrawal, of many protective measures for containing the SARS CoV-2 pandemic. At the same time, new and highly mutated variants of the virus are found to have significantly higher transmissibility and reduced vaccine efficacy, thus causing high infection rates during the third year of the pandemic. The combination of reduced measures and increased infectivity poses a particular risk for unvaccinated individuals, including animals susceptible to the virus. Among the latter, non-human primates (NHPs) are particularly vulnerable. They serve as important models in various fields of biomedical research and because of their cognitive capabilities, they receive particular attention in animal welfare regulations around the world. Yet, although they played an extraordinarily important role for developing and testing vaccines against SARS-CoV-2, the protection of captive rhesus monkeys against Covid-19 has rarely been discussed. We here report upon twofold mRNA vaccination of a cohort of 19 elderly rhesus monkeys (Macaca mulatta) against infection by SARS-CoV-2. All animals were closely monitored on possible side effects of vaccination, and were tested for neutralising antibodies against the virus. The data show that vaccination of rhesus monkeys is a safe and reliable measure to protect these animals against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunogenicidad Vacunal , Macaca mulatta , SARS-CoV-2 , Vacunación , Vacunas Virales
8.
Cogn Neurodyn ; 17(1): 221-237, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36704631

RESUMEN

Reaction times (RTs) are an essential metric used for understanding the link between brain and behaviour. As research is reaffirming the tight coupling between neuronal and behavioural RTs, thorough statistical modelling of RT data is thus essential to enrich current theories and motivate novel findings. A statistical distribution is proposed herein that is able to model the complete RT's distribution, including location, scale and shape: the generalised-exponential-Gaussian (GEG) distribution. The GEG distribution enables shifting the attention from traditional means and standard deviations to the entire RT distribution. The mathematical properties of the GEG distribution are presented and investigated via simulations. Additionally, the GEG distribution is featured via four real-life data sets. Finally, we discuss how the proposed distribution can be used for regression analyses via generalised additive models for location, scale and shape (GAMLSS).

9.
J Vis Exp ; (179)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35129184

RESUMEN

The 5-choice serial reaction time task (5-CSRTT) is a behavioral test often used to study visuospatial attention and impulsiveness in rodents. The task requires animals to allocate attention to a horizontal array of five small apertures equipped with light sources and, within a limited time window, nose-poke one illuminated target aperture to get a food reward at the food magazine located in the opposite wall of the chamber. The task considers behavioral control measures such as response accuracy and reaction times and allows to infer selective attention and impulsivity. Task difficulty can be controlled by modifying the stimulus duration and task design in general. Commercially available apparatus usually consists of an experimental chamber and particular software to specify task parameters, but due to fixed hard- and software, they pose many limitations on changes in the general experimental design and specific task requirements and the related data output. This article explains a fully customizable alternative based on an easy-to-use single-board microcontroller and standard electrotechnical components, an open-access Arduino script, and a Matlab-toolbox for hardware control and behavioral task specifications, respectively. The toolbox includes an optional staircase procedure, enabling automated behavioral training. The complete hardware setup, which can be installed in customized chambers, and the freely adaptable software encourage non-standardized task and chamber design. The design of the system and the open-source code for hardware control and experimental setup are described.


Asunto(s)
Conducta Impulsiva , Roedores , Animales , Computadores , Tiempo de Reacción/fisiología , Recompensa
10.
J Neurophysiol ; 105(6): 3092-105, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21451061

RESUMEN

In monkeys, long-term recordings with chronically implanted microelectrodes frequently suffer from a continuously decreasing probability to record single units or even small multiunit clusters. This problem is associated with two technical limitations of the available devices: first, restrictions for electrode movement, and second, absent possibility to exchange electrodes easily on a regular basis. Permitting to adjust the recording site and to use new recording tracks with proper electrodes may avoid these problems and make chronic more similar to acute recordings. Here, we describe a novel type of implant tackling this issue. It consists of a new type of recording chamber combined with an exchangeable multielectrode array that precisely fits into it. The multielectrode array is reversibly fixed to the chamber, and within a minute it can be exchanged against another array equipped with new electrodes at the awake animal. The array allows for bidirectional movement of six electrodes for a distance of up to 12 mm. The recording chamber enables hermetical isolation of the intracranial space, resulting in long-lasting aseptic conditions and reducing dural thickening to a minimum, as confirmed by microbiological and histopathological analysis. The device has a simple design and is both easy to produce and low in cost. Functionality has been tested in primary and secondary visual cortex of three macaque monkeys over a period of up to 15 mo. The results show that even after more than a year, single and multiunit responses can be obtained with high incidence.


Asunto(s)
Mapeo Encefálico , Electrodos Implantados , Electrofisiología/instrumentación , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Electrofisiología/métodos , Macaca mulatta , Estimulación Luminosa/métodos , Factores de Tiempo , Corteza Visual/citología , Campos Visuales/fisiología
11.
Commun Biol ; 4(1): 690, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099840

RESUMEN

Brain signal recordings with epidural microarrays constitute a low-invasive approach for recording distributed neuronal signals. Epidural field potentials (EFPs) may serve as a safe and highly beneficial signal source for a variety of research questions arising from both basic and applied neuroscience. A wider use of these signals, however, is constrained by a lack of data on their specific information content. Here, we make use of the high spatial resolution and the columnar organization of macaque primary visual cortex (V1) to investigate whether and to what extent EFP signals preserve information about various visual stimulus features. Two monkeys were presented with different feature combinations of location, size, shape, and color, yielding a total of 375 stimulus conditions. Visual features were chosen to access different spatial levels of functional organization. We found that, besides being highly specific for locational information, EFPs were significantly modulated by small differences in size, shape, and color, allowing for high stimulus classification rates even at the single-trial level. The results support the notion that EFPs constitute a low-invasive, highly beneficial signal source for longer-term recordings for medical and basic research by showing that they convey detailed and reliable information about constituent features of activating stimuli.


Asunto(s)
Macaca mulatta/fisiología , Corteza Visual , Animales , Mapeo Encefálico , Potenciales Evocados Visuales , Masculino , Neuronas/fisiología , Estimulación Luminosa
12.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34556556

RESUMEN

The nonhuman primate (NHP) constitutes an extraordinarily important model in neuroscience research for understanding the neuronal underpinnings of perceptual, motor, cognitive, and executive functions of the primate brain, and to study the physiological causes, effects, and potential treatments of brain disorders. Because of their cognitive capabilities, NHPs receive special attention in animal welfare regulations around the world, and their well-being is a benchmark for the evaluation, monitoring, and refinement of experimental procedures. As a consequence, many typical neuroscientific procedures are considered only mildly severe by animal welfare boards. There is, however, an ongoing debate about possible long-term and cumulative effects. Because of a lack of longitudinal data, it is unclear whether mildly severe procedures may cause more significant harm on the long-term, and to what extent they may impact animal well-being and healthiness over time. We here make use of a database of blood samples drawn over a period of 15 years from 39 rhesus monkeys (Macaca mulatta) to address the issue of long-term, cumulative effects of neuroscientific procedures. A careful analysis of indicative primate blood markers for chronic inflammation, hydration status, and stress levels, their comparison to baseline values from both the same animals and the literature, and evaluation of additional hematologic, physiological, and behavioral parameters did not provide support for the notion of long-term, cumulative effects on the monkeys' healthiness and well-being. The results may serve the community as a reference for the severity assessment of neuroscientific experiments involving NHPs.


Asunto(s)
Laboratorios , Neurociencias , Bienestar del Animal , Animales , Encéfalo , Macaca mulatta
13.
Front Neurosci ; 13: 83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809117

RESUMEN

Neurophysiological data acquisition using multi-electrode arrays and/or (semi-) chronic recordings frequently has to deal with low signal-to-noise ratio (SNR) of neuronal responses and potential failure of detecting evoked responses within random background fluctuations. Conventional methods to extract action potentials (spikes) from background noise often apply thresholds to the recorded signal, usually allowing reliable detection of spikes when data exhibit a good SNR, but often failing when SNR is poor. We here investigate a threshold-independent, fast, and automated procedure for analysis of low SNR data, based on fullwave-rectification and low-pass filtering the signal as a measure of the entire spiking activity (ESA). We investigate the sensitivity and reliability of the ESA-signal for detecting evoked responses by applying an automated receptive field (RF) mapping procedure to semi-chronically recorded data from primary visual cortex (V1) of five macaque monkeys. For recording sites with low SNR, the usage of ESA improved the detection rate of RFs by a factor of 2.5 in comparison to MUA-based detection. For recording sites with medium and high SNR, ESA delivered 30% more RFs than MUA. This significantly higher yield of ESA-based RF-detection still hold true when using an iterative procedure for determining the optimal spike threshold for each MUA individually. Moreover, selectivity measures for ESA-based RFs were quite compatible with MUA-based RFs. Regarding RF size, ESA delivered larger RFs than thresholded MUA, but size difference was consistent over all SNR fractions. Regarding orientation selectivity, ESA delivered more sites with significant orientation-dependent responses but with somewhat lower orientation indexes than MUA. However, preferred orientations were similar for both signal types. The results suggest that ESA is a powerful signal for applications requiring automated, fast, and reliable response detection, as e.g., brain-computer interfaces and neuroprosthetics, due to its high sensitivity and its independence from user-dependent intervention. Because the full information of the spiking activity is preserved, ESA also constitutes a valuable alternative for offline analysis of data with limited SNR.

14.
Vision Res ; 46(21): 3563-74, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16879852

RESUMEN

We report findings from several variants of a psychophysical experiment using an acceleration detection task in which we tested predictions derived from recent neurophysiological data obtained from monkey area MT. The task was designed as a Posner paradigm and required subjects to detect the speed-up of a moving bar, cued with 75% validity. Displays varied according to number of simultaneously presented objects, spatial distance, and difficulty of the task. All data obtained under different levels of competition with multiple objects were compared to a corresponding condition, in which only a single moving bar was presented in the absence of any interfering distracter object. For attended objects, subjects did not show any difference in their ability to detect accelerations, regardless of the strength of inter-object competition or spatial distance. This finding was consistent in all of the experiments, and was even obtained when the acceleration was made hardly detectable. In contrast, increasing competitive interactions either by enhancing number of objects or spatial proximity resulted in strong reduction of performance for non-attended objects. The findings support current noise reduction models and suggest that attention adjusts neuronal processing to ensure a constant sensory representation of the attended object as if this object was the only one in the scene.


Asunto(s)
Atención , Modelos Psicológicos , Percepción de Movimiento/fisiología , Detección de Señal Psicológica , Adulto , Femenino , Humanos , Psicofísica
15.
J Neurosci ; 24(27): 6106-14, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15240802

RESUMEN

Remarkable alterations of perception during long-lasting attentional processes have been described in several recent studies. Although these findings have gained much interest, almost nothing is known about the modulation of neuronal responses during sustained attention. Therefore, we investigated the effect of prolonged selective attention on neuronal feature selectivity. Awake macaque monkeys were trained to perform a motion-tracking task that required attending one of two simultaneously presented moving bars for up to 15 sec. Extracellular recordings were obtained from neurons in macaque motion-sensitive middle temporal visual area (MT/V5). Under conditions of attention, we found high and constant direction selectivity over time. This was expressed by a strong and persistent response contrast between presentations of preferred and nonpreferred stimuli in successive motion cycles. With attention directed to another moving bar, neuronal responses to the behaviorally irrelevant stimulus became continuously less specific for the direction of motion. In particular, increasingly higher firing rates for motion in null direction caused a strong reduction of direction selectivity, which further increased with enhanced proximity between target and distracter bar. A passive condition experiment revealed that this reduction occurred only when motion remained the behaviorally relevant feature but disappeared when attention was withdrawn from this feature domain. Thus, sustained attention seems to stabilize direction selectivity of neurons in area MT against a time and competition-dependent degradation, whereas nonattended objects suffer from a reduced neuronal representation.


Asunto(s)
Atención/fisiología , Percepción de Movimiento/fisiología , Lóbulo Temporal/fisiología , Animales , Movimientos Oculares/fisiología , Fijación Ocular/fisiología , Macaca mulatta , Masculino , Neuronas/fisiología , Estimulación Luminosa/métodos , Vigilia/fisiología
16.
Front Hum Neurosci ; 8: 414, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959132

RESUMEN

Directing attention to a specific feature of an object has been linked to different forms of attentional modulation. Object-based attention theory founds on the finding that even task-irrelevant features at the selected object are subject to attentional modulation, while feature-based attention theory proposes a global processing benefit for the selected feature even at other objects. Most studies investigated either the one or the other form of attention, leaving open the possibility that both object- and feature-specific attentional effects do occur at the same time and may just represent two sides of a single attention system. We here investigate this issue by testing attentional spreading within and across objects, using reaction time (RT) measurements to changes of attended and unattended features on both attended and unattended objects. We asked subjects to report color and speed changes occurring on one of two overlapping random dot patterns (RDPs), presented at the center of gaze. The key property of the stimulation was that only one of the features (e.g., motion direction) was unique for each object, whereas the other feature (e.g., color) was shared by both. The results of two experiments show that co-selection of unattended features even occurs when those features have no means for selecting the object. At the same time, they demonstrate that this processing benefit is not restricted to the selected object but spreads to the task-irrelevant one. We conceptualize these findings by a 3-step model of attention that assumes a task-dependent top-down gain, object-specific feature selection based on task- and binding characteristics, and a global feature-specific processing enhancement. The model allows for the unification of a vast amount of experimental results into a single model, and makes various experimentally testable predictions for the interaction of object- and feature-specific processes.

17.
Neuron ; 78(4): 740-50, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23719167

RESUMEN

Selective visual attention is known to be associated with characteristic modulations of neuronal activity in early visual cortex, but there is only rare evidence showing that these neuronal modulations are directly related to attention-dependent behavioral improvements. Here, we describe a strong, transient increase in the response of neurons in the mediotemporal (MT) area to behaviorally relevant speed changes that is not only modulated by attention but also highly correlated with the animal's performance. In trials with fast reaction time (RT), this transient component occurs with short latency, whereas latency increases monotonically with slower RT. Importantly, RTs are related not to the firing rate modulation during sustained attentive tracking of the target prior to the speed change but to the variability of the neuronal response. Our findings suggest a direct link between attention-dependent response modulations in early visual cortex and improved behavioral performance.


Asunto(s)
Atención/fisiología , Potenciales Evocados/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Corteza Visual/fisiología , Animales , Conducta Animal/fisiología , Área de Dependencia-Independencia , Macaca mulatta
18.
Vision Res ; 72: 1-13, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22982685

RESUMEN

Perception of constant motion has been extensively studied both psychophysically and physiologically, but the human ability to detect dynamic changes in motion, such as rapid speed changes, is only poorly characterized and understood. Yet, perception and representation of such dynamic changes is of strong behavioral relevance, as illustrated by their potential for attentional capture. In the present study, we measured and compared detection thresholds for instantaneous accelerations and decelerations of drifting Gabor patches at different retinal eccentricities. As a main result, we find that detection performance depends strongly on eccentricity. Under foveal viewing conditions, average thresholds were lower for accelerations than for decelerations. However, between 5° and 15° eccentricity, this relation is inverted, and deceleration detection becomes better than acceleration detection. Results of an additional experiment suggest that this can be explained by a fast eccentricity-dependent adaptation effect. Our findings are discussed with special emphasis on their relation to data from neurophysiological experiments.


Asunto(s)
Percepción de Movimiento/fisiología , Campos Visuales/fisiología , Aceleración , Adulto , Análisis de Varianza , Desaceleración , Femenino , Fóvea Central/fisiología , Humanos , Masculino , Estimulación Luminosa/métodos , Psicofísica , Umbral Sensorial/fisiología
19.
Vision Res ; 48(27): 2696-707, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18824190

RESUMEN

Feature-directed attention has been recently studied in various psychophysical, electrophysiological, and imaging studies. Convincing evidence has been obtained for its global effectiveness, but there is a debate about the processing fate of non-attended target features. A number of studies demonstrated feature-directed attention being associated with co-selection of non-relevant object features, thus resulting in selection of the entire object, whereas most other studies did not examine the extent to which processing of non-attended features was affected. Here, we present the results of two psychophysical experiments consisting of a Posner-like paradigm in which subjects were cued either to an individual feature or the entire object. We measured reaction times to changes in speed or colour of one of two simultaneously presented gratings. Our results strongly support the view that feature-based selection is a unique selection process different from object-based selection in that it can be associated with active suppression of non-relevant features.


Asunto(s)
Atención/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Percepción de Color/fisiología , Señales (Psicología) , Femenino , Humanos , Masculino , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Psicofísica , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA