Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 73(5): 959-970.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686592

RESUMEN

Ribosomes undergo substantial conformational changes during translation elongation to accommodate incoming aminoacyl-tRNAs and translocate along the mRNA template. We used multiple elongation inhibitors and chemical probing to define ribosome conformational states corresponding to differently sized ribosome-protected mRNA fragments (RPFs) generated by ribosome profiling. We show, using various genetic and environmental perturbations, that short 20-22 or classical 27-29 nucleotide RPFs correspond to ribosomes with open or occupied ribosomal A sites, respectively. These distinct states of translation elongation are readily discerned by ribosome profiling in all eukaryotes we tested, including fungi, worms, and mammals. This high-resolution ribosome profiling approach reveals mechanisms of translation-elongation arrest during distinct stress conditions. Hyperosmotic stress inhibits translocation through Rck2-dependent eEF2 phosphorylation, whereas oxidative stress traps ribosomes in a pre-translocation state, independent of Rck2-driven eEF2 phosphorylation. These results provide insights and approaches for defining the molecular events that impact translation elongation throughout biology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Extensión de la Cadena Peptídica de Translación , Proteínas Ribosómicas/genética , Ribosomas/genética , Estrés Fisiológico , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Codón , Células HeLa , Humanos , Conformación de Ácido Nucleico , Presión Osmótica , Estrés Oxidativo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Aminoacilación de ARN de Transferencia
2.
Development ; 139(17): 3232-41, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22872088

RESUMEN

Mutations in the human Shwachman-Bodian-Diamond syndrome (SBDS) gene cause defective ribosome assembly and are associated with exocrine pancreatic insufficiency, chronic neutropenia and skeletal defects. However, the mechanism underlying these phenotypes remains unclear. Here we show that knockdown of the zebrafish sbds ortholog fully recapitulates the spectrum of developmental abnormalities observed in the human syndrome, and further implicate impaired proliferation of ptf1a-expressing pancreatic progenitor cells as the basis for the observed pancreatic phenotype. It is thought that diseases of ribosome assembly share a p53-dependent mechanism. However, loss of p53 did not rescue the developmental defects associated with loss of zebrafish sbds. To clarify the molecular mechanisms underlying the observed organogenesis defects, we performed transcriptional profiling to identify candidate downstream mediators of the sbds phenotype. Among transcripts displaying differential expression, functional group analysis revealed marked enrichment of genes related to ribosome biogenesis, rRNA processing and translational initiation. Among these, ribosomal protein L3 (rpl3) and pescadillo (pes) were selected for additional analysis. Similar to knockdown of sbds, knockdown or mutation of either rpl3 or pes resulted in impaired expansion of pancreatic progenitor cells. The pancreatic phenotypes observed in rpl3- and pes-deficient embryos were also independent of p53. Together, these data suggest novel p53-independent roles for ribosomal biogenesis genes in zebrafish pancreas development.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Modelos Animales de Enfermedad , Insuficiencia Pancreática Exocrina/genética , Lipomatosis/genética , Proteínas Nucleares/genética , Páncreas/embriología , Proteínas Ribosómicas/genética , Ribosomas/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Azul Alcián , Animales , Antraquinonas , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Proteínas Nucleares/deficiencia , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/metabolismo , Proteína Ribosomal L3 , Proteínas Ribosómicas/deficiencia , Ribosomas/metabolismo , Síndrome de Shwachman-Diamond , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/deficiencia
3.
J Biol Chem ; 288(41): 29530-8, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23963452

RESUMEN

Eukaryotic peptide release factor 3 (eRF3) is a conserved, essential gene in eukaryotes implicated in translation termination. We have systematically measured the contribution of eRF3 to the rates of peptide release with both saturating and limiting levels of eukaryotic release factor 1 (eRF1). Although eRF3 modestly stimulates the absolute rate of peptide release (∼5-fold), it strongly increases the rate of peptide release when eRF1 is limiting (>20-fold). This effect was generalizable across all stop codons and in a variety of contexts. Further investigation revealed that eRF1 remains associated with ribosomal complexes after peptide release and subunit dissociation and that eRF3 promotes the dissociation of eRF1 from these post-termination complexes. These data are consistent with models where eRF3 principally affects binding interactions between eRF1 and the ribosome, either prior to or subsequent to peptide release. A role for eRF3 as an escort for eRF1 into its fully accommodated state is easily reconciled with its close sequence similarity to the translational GTPase EFTu.


Asunto(s)
Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Catálisis , Codón de Terminación/genética , Guanosina Trifosfato/metabolismo , Cinética , Modelos Genéticos , Mutación , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/genética , Péptidos/genética , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell Biol ; 22(20): 7258-67, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12242301

RESUMEN

The SSU processome is required for production of the small ribosomal subunit RNA, the 18S rRNA. Specifically, the U3 small nucleolar RNA (snoRNA) component of the SSU processome is essential for the formation of the conserved central pseudoknot and for cleavages of the pre-rRNA, both of which are required for 18S maturation. To further elucidate how these events are mediated, we examined the regulatory and mechanistic roles of the U3 specific proteins: Imp3p, Imp4p, and Mpp10p. We found that these proteins demonstrated an interdependence with respect to their stability and to their association with the U3 snoRNA. Because mutations in the U3 snoRNA that disrupt pre-rRNA processing confer similar defects on growth and pre-rRNA processing as do carboxy-terminal truncations of Mpp10p, we hypothesized that Mpp10p may be involved in maintaining U3 snoRNA-pre-rRNA base pairing. However, combining the two mutations resulted in a more pronounced cleavage defect at site A(2), suggesting that Mpp10p is also required at an additional mechanistic step. Furthermore, heterologous complementation experiments demonstrate that the last 95 amino acids of yeast Mpp10p are specifically required for growth and pre-rRNA processing at low temperatures.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fosfoproteínas/genética , Precursores del ARN/química , ARN de Hongos/química , ARN Ribosómico 18S/química , ARN Nucleolar Pequeño/química , Ribonucleoproteínas/genética , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
5.
Brain Res ; 945(2): 160-73, 2002 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-12126878

RESUMEN

Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by mutations in the survival motor neuron gene (SMN1). While it has been shown that the SMN protein is involved in spliceosome biogenesis and pre-mRNA splicing, there is increasing evidence indicating that SMN may also perform important functions in the nucleolus. We demonstrate here through the use of a previously characterized polyclonal anti-SMN antibody, abSMN, that the SMN protein shows a striking colocalization with the nucleolar protein, fibrillarin, in both nucleoli and Cajal bodies/gems of primary neurons. Immunoblot analysis with antifibrillarin and two different anti-SMN antibodies reveals that SMN and fibrillarin also cofractionate in the insoluble protein fraction of cultured cell lysates. Immunoprecipitation experiments using whole cell extracts of HeLa cells and cultured neurons revealed that abSMN coprecipitated small amounts of the U3 small nucleolar RNA (snoRNA) previously shown to be associated with fibrillarin in vivo. These studies raise the possibility that SMN may serve a function in rRNA maturation/ribosome synthesis similar to its role in spliceosome biogenesis.


Asunto(s)
Nucléolo Celular/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Northern Blotting , Western Blotting , Neoplasias Encefálicas/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Células HeLa , Humanos , Etiquetado Corte-Fin in Situ , Ratones , Microscopía Fluorescente , Neuronas Motoras/ultraestructura , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuroblastoma/metabolismo , Pruebas de Precipitina , Proteínas de Unión al ARN , Conejos , Ratas , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Células Tumorales Cultivadas
6.
J Mol Biol ; 410(1): 118-30, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21570405

RESUMEN

Ribosomes exist as a heterogenous pool of macromolecular complexes composed of ribosomal RNA molecules, ribosomal proteins, and numerous associated "nonribosomal" proteins. To identify nonribosomal proteins that may modulate ribosome activity, we examined the composition of translationally active and inactive ribosomes using a proteomic multidimensional protein identification technology. Notably, the phosphorylated isoform of glycogen synthase, glycogen synthase 1 (GYS1), was preferentially associated with elongating ribosomes. Depletion of GYS1 affected the translation of a subset of cellular mRNAs, some of which encode proteins that modulate protein biosynthesis. These findings argue that GYS1 abundance, by virtue of its ribosomal association, provides a feedback loop between the energy state of the cells and the translation machinery.


Asunto(s)
Glucógeno Sintasa/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Biomarcadores/metabolismo , Northern Blotting , Western Blotting , Perfilación de la Expresión Génica , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/genética , Células HeLa , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Mol Cell Biol ; 30(8): 2006-16, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154146

RESUMEN

Cells possess mechanisms that permit survival and recovery from stress, several of which regulate the phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha). We identified the human OGFOD1 protein as a novel stress granule component that regulates the phosphorylation of eIF2alpha and the resumption of translation in cells recovering from arsenite-induced stress. Coimmunoprecipitation studies revealed that OGFOD1 associates with a small subset of stress granule proteins (G3BP1, USP10, Caprin1, and YB-1) and the ribosome in both unstressed and stressed cells. Overexpression of OGFOD1 led to increased abundance of phosphorylated eIF2alpha, both in unstressed cells and in cells exposed to arsenite-induced stress, and to accelerated apoptosis during stress. Conversely, knockdown of OGFOD1 resulted in smaller amounts of phosphorylated eIF2alpha and a faster accumulation of polyribosomes in cells recovering from stress. Finally, OGFOD1 interacted with both eIF2alpha and the eIF2alpha kinase heme-regulated inhibitor (HRI), which was identified as a novel stress granule resident. These findings argue that OGFOD1 plays important proapoptotic roles in the regulation of translation and HRI-mediated phosphorylation of eIF2alpha in cells subjected to arsenite-induced stress.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Animales , Apoptosis , Arsenitos/farmacología , Proteínas Portadoras/genética , ADN Helicasas , Inhibidores Enzimáticos/farmacología , Factor 2 Eucariótico de Iniciación/genética , Células HeLa/efectos de los fármacos , Humanos , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Biosíntesis de Proteínas/efectos de los fármacos , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Teratógenos/farmacología , Tapsigargina/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
8.
Prog Mol Biol Transl Sci ; 90: 187-210, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20374742

RESUMEN

MicroRNAs are 20-21 nucleotides-long noncoding RNAs that function as posttranscriptional regulators of gene expression in a variety of organisms ranging from plants to mammalian cells. These regulators are encoded by approximately 800 genes in the mammalian genome and target half of the mRNAs in mammalian cells. While the biogenesis of microRNAs is fairly well understood, the mechanism by which target genes are regulated remains controversial. The recent discoveries that viruses encode microRNAs or subvert host cell microRNAs has enhanced our knowledge about biological functions of microRNAs during disease and has suggested that microRNAs could be used as targets in antiviral gene therapy. This review will provide a brief history of microRNA research, discuss the biogenesis and mechanisms of microRNAs, and summarize findings that have employed inhibitors of microRNA miR-122 to treat hepatitis C virus-induced liver disease.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Animales , Regulación de la Expresión Génica , Hepacivirus/metabolismo , Humanos , Hígado/metabolismo , Hígado/virología , MicroARNs/genética , Especificidad de Órganos/genética
9.
Nat Rev Microbiol ; 4(9): 651-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16912711

RESUMEN

MicroRNAs (miRNAs), which can be expressed in a cell-type and tissue-specific manner, can influence the activities of genes that control cell growth and differentiation. Viruses often have clear tissue tropisms, raising the possibility that cellular miRNAs might modulate their pathogenesis. In this Review, we discuss recent findings that some vertebrate viruses either encode miRNAs or subvert cellular miRNAs, and that these miRNAs participate in both the infectious and the latent phase of the viral life cycle.


Asunto(s)
Virus ADN/genética , Virus ADN/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Virus ADN/crecimiento & desarrollo , Regulación hacia Abajo , Genoma Viral , Humanos , Regulación hacia Arriba , Vertebrados/virología
10.
Mol Cell ; 9(2): 329-39, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11864606

RESUMEN

Little is understood about the role of nucleolar RNA binding proteins in ribosome biogenesis, although there is a clear need for them based on the strict folding requirements of the pre-rRNA. We have identified a superfamily of RNA binding proteins whose members are required for different stages of ribosome biogenesis. The Imp4 superfamily is composed of five individual families (Imp4, Rpf1, Rpf2, Brx1, and Ssf) that all possess the sigma(70)-like motif, a eukaryotic RNA binding domain with prokaryotic origins. The Imp4 superfamily members associate with RNAs that are consistent with their distinct roles in ribosome biogenesis and suggest the mechanisms by which they function.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/fisiología , Células Eucariotas/metabolismo , Familia de Multigenes , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/fisiología , Ribosomas/metabolismo , Factor sigma/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Nucléolo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Filogenia , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleolares Pequeñas/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor sigma/química , Relación Estructura-Actividad
11.
Nature ; 417(6892): 967-70, 2002 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12068309

RESUMEN

Although the U3 small nucleolar RNA (snoRNA), a member of the box C/D class of snoRNAs, was identified with the spliceosomal small nuclear RNAs (snRNAs) over 30 years ago, its function and its associated protein components have remained more elusive. The U3 snoRNA is ubiquitous in eukaryotes and is required for nucleolar processing of pre-18S ribosomal RNA in all organisms where it has been tested. Biochemical and genetic analyses suggest that U3 pre-rRNA base-pairing interactions mediate endonucleolytic pre-rRNA cleavages. Here we have purified a large ribonucleoprotein (RNP) complex from Saccharomyces cerevisiae that contains the U3 snoRNA and 28 proteins. Seventeen new proteins (Utp1 17) and Rrp5 were present, as were ten known components. The Utp proteins are nucleolar and specifically associated with the U3 snoRNA. Depletion of the Utp proteins impedes production of the 18S rRNA, indicating that they are part of the active pre-rRNA processing complex. On the basis of its large size (80S; calculated relative molecular mass of at least 2,200,000) and function, this complex may correspond to the terminal knobs present at the 5' ends of nascent pre-rRNAs. We have termed this large RNP the small subunit (SSU) processome.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sustancias Macromoleculares , Microscopía Electrónica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Hongos/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN Ribosómico 18S/biosíntesis , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA