RESUMEN
BACKGROUND: Cadonilimab is a bispecific antibody targeting PD-1 and CTLA-4, which has shown substantial clinical benefits in advanced cervical cancer. In the COMPASSION-16 trial, we aimed to evaluate the addition of cadonilimab to first-line standard chemotherapy in persistent, recurrent, or metastatic cervical cancer. METHODS: In this randomised, double-blind, multicentre, placebo-controlled phase 3 trial, women aged 18-75 years across 59 clinical sites in China with previously untreated persistent, recurrent, or metastatic cervical cancer were randomly assigned (1:1) to receive cadonilimab (10 mg/kg) or placebo plus platinum-based chemotherapy with or without bevacizumab every 3 weeks for six cycles, followed by maintenance therapy every 3 weeks for up to 2 years. Randomisation was performed centrally through an interactive web-response system. Stratification factors were the use of bevacizumab (yes or no) and previous concurrent chemoradiotherapy (yes or no). The dual primary outcomes were progression-free survival as assessed by blinded independent central review and overall survival in the full analysis set. This study is registered with ClinicalTrials.gov, NCT04982237; the study has completed enrolment and is ongoing for treatment and follow-up. FINDINGS: 445 eligible women were enrolled between Sept 11, 2021, and June 23, 2022. Median progression-free survival was 12·7 months (95% CI 11·6-16·1) in the cadonilimab group and 8·1 months (7·7-9·6) in the placebo group (hazard ratio 0·62 [95% CI 0·49-0·80], p<0·0001); median overall survival was not reached (27·0 months to not estimable) versus 22·8 months (17·6-29·0), respectively (hazard ratio 0·64 [0·48-0·86], p=0·0011). The most common grade 3 or higher adverse events were decreased neutrophil count, decreased white blood cell count, and anaemia. INTERPRETATION: The addition of cadonilimab to first-line standard chemotherapy significantly improved progression-free survival and overall survival with a manageable safety profile in participants with persistent, recurrent, or metastatic cervical cancer. The data support the use of cadonilimab plus chemotherapy as an efficacious first-line therapy in persistent, recurrent, or metastatic cervical cancer. FUNDING: Akeso Biopharma.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Recurrencia Local de Neoplasia , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Persona de Mediana Edad , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Método Doble Ciego , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adulto , China , Recurrencia Local de Neoplasia/tratamiento farmacológico , Anciano , Adulto Joven , Adolescente , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Supervivencia sin ProgresiónRESUMEN
BACKGROUND: Endometriosis is well known as a chronic inflammatory disease. The development of endometriosis is heavily influenced by the estrogen receptor ß (ERß), while NOD-like receptors (NLRs) family CARD domain-containing 5 (NLRC5) exhibits anti-inflammatory properties during endometriosis. However, whether NLRC5-mediated anti-inflammation is involved in the ERß-mediated endometriosis is still uncertain. This study aimed to assess that relation. METHODS: Nine cases of eutopic endometrial tissue and ten cases of ectopic endometrial tissue were collected from patients with endometriosis, and endometrial samples from ten healthy fertile women were analyzed, and the expression levels of ERß were quantified using immunohistochemistry (IHC). Subsequently, we constructed mouse model of endometriosis by intraperitoneal injection. We detected the expression of ERß, NLRC5, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 and measured the volume of ectopic lesions in mice with endometriosis. In vitro, human endometrial stromal cells (hESCs) were transfected respectively with ERß-overexpressing and NLRC5-overexpressing plasmids. We then assessed the expression of ERß and NLRC5 using quantitative real-time PCR (qRT-PCR) and western blot analysis. Furthermore, we measured the concentrations of TNF-α, IL-6, and IL-10 in the cell culture supernatant through enzyme-linked immunosorbent assay (ELISA). Additionally, we evaluated the migration and invasion ability of hESCs using transwell and wound healing assays. RESULTS: Inhibition of NLRC5 expression promotes the development of ectopic lesions in mice with endometriosis, upregulates the expression of pro-inflammatory factors TNF-α and IL-6, and downregulates the expression of anti-inflammatory factor IL-10. The high expression of NLRC5 in endometriosis depended on the ERß overexpression. And ERß promoted the migration of hESCs partially depend on inflammatory microenvironment. Lastly, NLRC5 overexpression inhibited ERß-mediated development and inflammatory response of endometriosis. CONCLUSIONS: Our results suggest that the innate immune molecule NLRC5-mediated anti-inflammation participates in ERß-mediated endometriosis development, and partly clarifies the pathological mechanism of endometriosis, expanding our knowledge of the specific molecules related to the inflammatory response involved in endometriosis and potentially providing a new therapeutic target for endometriosis.
Asunto(s)
Endometriosis , Receptor beta de Estrógeno , Péptidos y Proteínas de Señalización Intracelular , Adulto , Animales , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Endometrio/metabolismo , Endometrio/patología , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Inmunohistoquímica , Inflamación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Based on the optical Magnus effect, the analytical expressions of the electromagnetic field that a spinning dielectric sphere illuminated by polarized plane waves are derived according to the "instantaneous rest-frame" hypothesis and Minkowski's theory. More attention is paid to the near field. The unusual optical phenomena in mesoscale spheres without material and illumination wave asymmetry that are the photonic hook (PH) and whispering gallery mode (WGM)-like resonance caused by rotation are explored. The impact of resonance scattering on PHs is further analyzed under this framework. The influence of non-reciprocal rotating dimensionless parameter γ on PH and resonance is emphasized. The results in this paper have extensive application prospects in mesotronics, particle manipulation, resonator design, mechatronics, and planetary exploration.
RESUMEN
BACKGROUND: The identification of novel prognostic biomarkers in elderly septic patients are essential for the improvement of mortality in sepsis in the context of precision medicine. The purpose of this study was to explore the expression pattern and prognostic value of serum interleukin-7 (IL-7) in predicting 28-day mortality in elderly patients with sepsis. METHODS: Patients were retrospectively enrolled according to the sepsis-3.0 diagnostic criteria and divided into the survival group and non-survival group based on the clinical outcome at the 28-day interval. The baseline characteristic data, samples for the laboratory tests, and the SOFA, Acute Physiology and Chronic Health Evaluation (APACHE II), as well as Glasgow coma scale (GCS) scores, were recorded within 24 h after admission to the emergency department. Serum levels of IL-7 and TNF-α of the patients were quantified by the Luminex assay. Spearman correlation analysis, logistic regressive analysis and receiver operating characteristic curve (ROC) analysis were performed, respectively. RESULTS: Totally, 220 elderly patients with sepsis were enrolled, 151 of whom died in a 28-day period. Albumin (ALB), high-density lipoprotein (HDL), systolic pressure (SBP), and platelet (PLT) were found to be significantly higher in the survival group (p < 0.05). IL-7 was shown to be correlated with TNF-α in the non-survival group (p = 0.030) but not in the survival group (p = 0.194). No correlation was shown between IL-7 and other factors (p > 0.05). IL-7 and TNF-α were found to be independent risk factors associated with the 28-day mortality (OR = 1.215, 1.420). Combination of IL-7, SOFA and ALB can make an AUROC of 0.874 with the specificity of 90.77 %. Combination of IL-7 and TNF-α can make an AUROC of 0.901 with the sensitivity of 90.41 % while the combination of IL-7, TNF-α, and ALB can make an AUROC of 0.898 with the sensitivity of 94.52 %. CONCLUSIONS: This study highlights the importance of monitoring the serum level of IL-7 and TNF-α in elderly septic patients as well as evaluating the combinations with other routine risk factors which can be potentially used for the identification of elderly septic patients with higher risk of mortality.
Asunto(s)
Interleucina-7 , Sepsis , Humanos , Interleucina-7/sangre , Femenino , Masculino , Anciano , Sepsis/sangre , Sepsis/mortalidad , Pronóstico , Estudios Retrospectivos , Anciano de 80 o más Años , Biomarcadores/sangre , Curva ROC , Factor de Necrosis Tumoral alfa/sangreRESUMEN
The presence of donor-specific antibodies (DSA) are associated with graft failure either following human leukocyte antigen (HLA)-mismatched allogeneic stem cell transplantation or after organ transplantation. Although targeting B cells and plasma cells have been used for desensitization, there have been reports of failure. T-follicular helper (Tfh) cells assist B cells in differentiating into antibody-secreting plasma cells. We used haploidentical allograft as a platform to investigate the possibility of targeting Tfh cells to desensitize DSA. The quantities of circulating Tfh (cTfh) cell subsets in allograft candidates were abnormal, and these cells, including the cTfh2 and cTfhem cell subsets, were positively related to the production of anti-HLA antibodies. Ex vivo experiments showed that the cTfh cells of anti-HLA antibody-positive allograft candidates could induce B cells to differentiate into DSA-producing plasmablasts. The immune synapse could be involved in the assistance of cTfh cells to B cells in antibody production. In vitro experiments and in vivo clinical pilot studies indicated that targeting cTfh cells with sirolimus can inhibit their auxiliary function in assisting B cells. Ex vivo and in vivo studies demonstrated the effect of sirolimus and rituximab on DSA desensitization compared with either sirolimus or rituximab alone (60%, 43.75%, and 30%, respectively). Our findings provide new insight into the role of Tfh cells in the pathogenesis of DSA production in HLA-mismatched transplant candidates. Our data also indicate that targeting Tfh cells is a novel strategy for DSA desensitization and combination of sirolimus and rituximab might be a potential therapy. The prospective cohort of this study is registered at http://www.chictr.org.cn as #ChiCTR-OPC-15006672.
Asunto(s)
Anticuerpos , Linfocitos T Colaboradores-Inductores , Humanos , Rituximab , Estudios Prospectivos , Antígenos HLA , Antígenos de Histocompatibilidad Clase II , Aloinjertos , SirolimusRESUMEN
The magnetic composite gel bead (Fe3O4-C@SA GB) adsorbent was prepared by sodium alginate (SA) crosslinking with pitaya peel-derived porous carbons (PPDPCs) and magnetic iron oxide nanoparticles (Fe3O4 NPs). The adsorption effects of Fe3O4-C@SA GBs on heavy metal ions (HMIs) and 17 ß-estradiol (E2) in water are evaluated by classical kinetic models and isotherm models. The pseudo-second-order kinetic model shows that Fe3O4-C@SA GBs have maximum adsorption capacities of 9.62, 7.50, and 13.61 mg/g for Cu (II), Cd (II), and Pb (II), respectively. Meanwhile, the highest adsorption performance of the synthesized gel beads to E2 is of ca. 276.3 mg/g. In addition, the Fe3O4-C@SA GBs can still maintain a high level of adsorption efficiency after five adsorption cycles, displaying economic efficiency and reusability. Hence, this work provides useful insights into the efficient adsorption elimination of pollutants in sewage and the corresponding adsorption mechanisms.
RESUMEN
INTRODUCTION: This report aims to present our initial miniseries of successful thoracoscopic repair for esophageal atresia (EA) and distal tracheoesophageal fistula (TEF) of Kluth type â ¢b3 in accordance with Kluth's classification. METHODS: From January 2012 to January 2024, ten patients with Kluth type â ¢b3 EA-TEF were treated by thoracoscopic surgery. The therapeutic methods and surgical outcomes were retrospectively reviewed. RESULTS: All procedures were completed thoracoscopically without conversions. A preoperative bronchoscopy assessment was conducted in four of the cases, revealing that the fistula from the distal segment was located high on the trachea at the level of T2 vertebral. The mean age of the patients at the time of operation was 2.0 ± 0.7 d (range, 1-3 d), and the mean weight at operation was 2.6 ± 0.4 kg (range, 1.8-3.0 kg). The mean operative time (skin to skin) for the entire series was 137.0 ± 8.9 min (range, 120-150 min). Oral feeding was initiated on the postoperative day 8.0 ± 1.9 (range, 6-12 d), and the mean duration for patients after surgery was 14.0 ± 2.4 d (range, 12-20 d). The postoperative period has been uneventful with no occurrences of mortality or morbidity to date. Three cases of formatted anastomotic stricture required at least one esophageal dilation after surgery. CONCLUSIONS: Pediatric surgeons should be aware of the rare variants of EA-TEF to avoid the diagnostic and management pitfalls. Patients with Kluth type â ¢b3 EA-TEF were amenable to repair by thoracoscopic surgery.
RESUMEN
AIMS: Nuclear protein 1 (Nupr1) is a multifunctional stress-induced protein involved in the regulation of tumorigenesis, apoptosis, and autophagy. However, its role in pulmonary hypertension (PH) after METH exposure remains unexplored. In this study, we aimed to investigate whether METH can induce PH and describe the role and mechanism of Nupr1 in the development of PH. METHODS AND RESULTS: Mice were made to induce pulmonary hypertension (PH) upon chronic intermittent treatment with METH. Their right ventricular systolic pressure (RVSP) was measured to assess pulmonary artery pressure. Pulmonary artery morphometry was determined by H&E staining and Masson staining. Nupr1 expression and function were detected in human lungs, mice lungs exposed to METH, and cultured pulmonary arterial smooth muscle cells (PASMCs) with METH treatment. Our results showed that chronic intermittent METH treatment successfully induced PH in mice. Nupr1 expression was increased in the cultured PASMCs, pulmonary arterial media from METH-exposed mice, and METH-ingested human specimens compared with control. Elevated Nupr1 expression promoted PASMC phenotype change from contractile to synthetic, which triggered pulmonary artery remodeling and resulted in PH formation. Mechanistically, Nupr1 mediated the opening of store-operated calcium entry (SOCE) by activating the expression of STIM1, thereby promoting Ca2+ influx and inducing phenotypic conversion of PASMCs. CONCLUSIONS: Nupr1 activation could promote Ca2+ influx through STIM1-mediated SOCE opening, which promoted METH-induced pulmonary artery remodeling and led to PH formation. These results suggested that Nupr1 played an important role in METH-induced PH and might be a potential target for METH-related PH therapy.
Asunto(s)
Hipertensión Pulmonar , Metanfetamina , Ratones , Humanos , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Metanfetamina/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Células Cultivadas , Arteria Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Proliferación CelularRESUMEN
This study introduces a new wide-bandgap graphene-like structure, denoted as C6BN, achieved by incorporating an eight-electron BN pair, substantially modifying its electronic properties. Utilizing extensive density functional calculations, we comprehensively analyzed the stability, electronic structure, mechanical properties, and optical-electrical characteristics of C6BN. Our investigations reveal the material's exceptional thermodynamic, mechanical, and dynamic stability. Notably, the calculated wide bandgap of 2.81 eV in C6BN, supported by analyses of energy levels, band structures, and density of states, positions it as a promising two-dimensional wide-bandgap semiconductor. Additionally, C6BN exhibits isotropic mechanical features, highlighting its inherent flexibility. Remarkably, our calculations indicate an ultra-low dielectric constant (k = 1.67) for C6BN, surpassing that of well-established third-generation semiconductors. Further exploration into the thermoelectric properties of C6BN demonstrates its promising performance, as evidenced by calculations of thermal conductivity (κ), power factor (P), and Seebeck coefficient (S). In summary, our findings underscore the significant potential of the proposed C6BN structure as a flexible two-dimensional material poised to drive future advancements in electronic and energy-related technologies.
RESUMEN
Exploring multiferroic materials that combine magnetic and ferroelectric properties is scientifically interesting and has important technical implications for many functions of nanoscale devices. In this work, spintronics and magnetoelectric coupling devices are proposed in two-dimensional (2D) layered ferromagnetic (FM)/ferroelectric (FE) van de Waals (vdW) heterostructures, VSeTe/Sc2CO2, employing density functional theory (DFT) calculations. The results indicate that the VSeTe/Sc2CO2 vdW heterostructure changes from a metal to a semiconductor in Sc2CO2-P↑ and Sc2CO2-P↓ polarization states. At the same time, the charge at the interface of the VSeTe/Sc2CO2 heterostructure will also be redistributed with the transformation of the ferroelectric polarization state, resulting in the change of the distribution of the electronic states near the Fermi level, and thus the change in the magnetic anisotropy energy (EMAE) of the heterostructure. Interestingly, biaxial strain brings reversibility and non-volatile regulation to the heterostructure of semiconductors and metals. The results provide an effective way to fabricate magnetoelectric coupling devices with 2D multiferroic heterostructures.
RESUMEN
OBJECTIVE: To investigate the relationship between single nucleotide polymorphisms (SNPs) of cGMP-dependent protein kinase I (PRKG1) gene and gene-environment interactions with bronchial asthma in children. METHODS: 109 asthma patients and 158 healthy controls from the General Hospital of Northern Theater Command were enrolled, based case-control study. The iMLDR® multiple SNP typing technique was applied to detect the genotypes of rs7903366, rs7081864, rs7070958 and rs7897633 in PRKG1 gene. The percentage of eosinophils (EOS%) in peripheral blood and serum immunoglobulin E (IgE) in the case group were also measured. Gene-environment interactions were examined using the generalized multi-factor dimensionality reduction (GMDR) method. RESULTS: There were polymorphisms in four SNPs of PRKG1 gene in the case and control groups. The genotype and allele frequencies distribution of rs7897633 demonstrated statistical significance (p < 0.05). There were no statistically significant differences in EOS% and IgE among genotypes at the four SNPs of PRKG1 gene (p > 0.05). The haplotypes CAGA and TGAC presented significant association with asthma risk (p < 0.05). The four-factor model indicated a potential gene-environment interaction in rs7897633, allergen exposure, residence, and environmental tobacco smoke (ETS) exposure (p < 0.05). CONCLUSIONS: The rs7897633 in PRKG1 gene was associated with susceptibility to childhood asthma, and C allele is a protective factor. The haplotype CAGA had a protective effect against asthma risk and TGAC was linked to the high risk of developing asthma. Moreover, the interaction of rs7897633, allergen exposure, residence, and ETS exposure conferred susceptibility to childhood asthma.
Asunto(s)
Asma , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Genotipo , Inmunoglobulina E , Polimorfismo de Nucleótido Simple , Humanos , Asma/genética , Asma/inmunología , Masculino , Femenino , Niño , Inmunoglobulina E/sangre , Estudios de Casos y Controles , Preescolar , Haplotipos , Frecuencia de los Genes , Eosinófilos/inmunología , AdolescenteRESUMEN
This study focuses on the recognition and isolation of fullerenes, which are crucial for further exploration of their physical and chemical properties. Our goal is to investigate the potential recognition of the D5h-C70 fullerene using crown-shaped metal compositions through density functional theory calculations. We assess the effectiveness of fullerene C70 recognition by studying the binding energy. Additionally, various analyses were conducted, including natural bond order charge analysis and reduced density gradient analysis, to understand the interaction mechanism between the host and guest molecules. These investigations provide valuable insights into the nature of the interaction and the stability of the host-guest system. To facilitate the release of the fullerene guest molecule, the vis-NIR spectra were simulated for the host-guest structures. This analysis offers guidance on the specific wavelengths that can be utilized to release the fullerene guest from the host-guest structures. Overall, this work proposes a new strategy for the effective recognition of various fullerene molecules and their subsequent release from host-guest systems. These findings could potentially be applied in assemblies involving fullerenes, advancing their practical applications.
RESUMEN
Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the ß phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer ß-P, ß-As, and ß-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for ß-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
RESUMEN
BACKGROUND Previous studies have identified an association between plasma levels of the inflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1), and outcomes for patients with sepsis. This retrospective single-center study assessed the association between plasma levels of MCP-1 and 28-day mortality in 136 patients ≥65 years diagnosed with sepsis between October 2020 and October 2021. MATERIAL AND METHODS The objective was to compare and analyze the parameters in the survival group (n=35) and the 28-day mortality group (n=101), including Sequential Organ Failure Assessment (SOFA), Acute Physiology and Chronic Health Evaluation II (APACHE II), plasma MCP-1, and laboratory test results. Plasma MCP-1 was quantified by cytokine test kit (LKTM014B, R&D). Statistical analysis was carried out in SPSS 26.0 and MedCalc 92.1.0 software. RESULTS The 28-day mortality group exhibited higher levels of SOFA, APACHEII, and plasma MCP-1 (all P<0.001), as well as lower levels of albumin, compared to the survival group (P<0.05). The logistic regression analysis findings indicated that SOFA, APACHEII, plasma MCP-1, and SBP are all independent risk factors for 28-day mortality. The area under the curve for SOFA, APACHEII, MCP-1, MCP-1+ SOFA, and MCP-1+APACHEII were 0.845, 0.744, 0.712, 0.879, and 0.822, respectively. MCP-1+SOFA exhibited higher sensitivity than SOFA alone. Furthermore, the assessment values of plasma MCP-1 combined with SOFA were superior to those of APACHE II or plasma MCP-1 (Z1=2.661, Z2=3.272, both P<0.01). CONCLUSIONS The findings from this study from a single center support those of previous studies that increased plasma levels of MCP-1 are significantly associated with 28-day mortality in patients with sepsis.
Asunto(s)
Quimiocina CCL2 , Sepsis , Anciano , Humanos , Unidades de Cuidados Intensivos , Puntuaciones en la Disfunción de Órganos , Pronóstico , Estudios Retrospectivos , Curva ROCRESUMEN
BACKGROUND: The prognostic performance of soluble CD40L (sCD40L) for illness severity in infectious diseases is rarely reported. We investigated the ability of sCD40L combined with Acute Physiology and Chronic Health Evaluation II (APACHE II) score to evaluate mortality in septic patients in the emergency department(ED). METHODS: We enrolled 222 septic patients in the ED of Beijing Chao-Yang Hospital from October 2020 to April 2021. Their serum sCD40L, PCT, lactate (Lac), Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation II (APACHE II) score were used to predict the prognosis of septic patients in terms of 28-day mortality. Serum sCD40L was detected by Human XL Cytokine Luminex. Logistic regression analysis and receiver operating characteristic (ROC) curves were used to assess the prognostic value of the variables. RESULTS: One hundred ninety-five patients met the inclusion criteria, divided into survival group (55 cases) and non-survival group (140 cases). sCD40L, PCT, Lac, SOFA and APACHE II score were found to independently predict 28-day mortality (P < 0.05). The AUC values of sCD40L, PCT, Lac, SOFA and APACHE II score were 0.662,0.727,0.704, 0.719 and 0.716, respectively. There was no difference in the diagnostic value of sCD40L compared with the PCT, Lac, SOFA score or APACHE II score (Z1 = 1.19, P = 0.234; Z2 = 0.77, P = 0.441; Z3 = 1.05, P = 0.294; Z4 = 0.97, P = 0.332). However, the combined evaluation of sCD40L + APACHE II (AUC:0.772, Z = 2.10, P = 0.036) was much better than sCD40L alone in predicting 28-day mortality. CONCLUSION: The predictive value of sCD40L + APACHE II is better than sCD40L alone for 28-day mortality. sCD40L combined with APACHE II score is valuable for predicting 28-day mortality in elderly patients with sepsis.
Asunto(s)
Ligando de CD40 , Sepsis , Humanos , Anciano , APACHE , Sepsis/diagnóstico , Puntuaciones en la Disfunción de Órganos , Pronóstico , Curva ROC , Ácido Láctico , Servicio de Urgencia en Hospital , Estudios RetrospectivosRESUMEN
OBJECTIVES: The timing of tracheostomy for critically ill patients on mechanical ventilation (MV) is a topic of controversy. Our objective was to determine the most suitable timing for tracheostomy in patients undergoing MV. DESIGN: Retrospective cohort study. SETTING AND PARTICIPANTS: One thousand eight hundred eighty-four hospitalisations received tracheostomy from January 2011 to December 2020 in a Chinese tertiary hospital. METHODS: Tracheostomy timing was divided into three groups: early tracheostomy (ET), intermediate tracheostomy (IMT), and late tracheostomy (LT), based on the duration from tracheal intubation to tracheostomy. We established two criteria to classify the timing of tracheostomy for data analysis: Criteria I (ET ≤ 5 days, 5 days < IMT ≤ 10 days, LT > 10 days) and Criteria II (ET ≤ 7 days, 7 days < IMT ≤ 14 days, LT > 14 days). Parameters such as length of ICU stay, length of hospital stay, and duration of MV were used to evaluate outcomes. Additionally, the outcomes were categorized as good prognosis, poor prognosis, and death based on the manner of hospital discharge. Student's t-test, analysis of variance (ANOVA), Mann-Whitney U test, Kruskal-Wallis test, Chi-square test, and Fisher's exact test were employed as appropriate to assess differences in demographic data and individual characteristics among the ET, IMT, and LT groups. Univariate Cox regression model and multivariable Cox proportional hazards regression model were utilized to determine whether delaying tracheostomy would increase the risk of death. RESULTS: In both of two criterion, patients with delayed tracheostomies had longer hospital stays (p < 0.001), ICU stays (p < 0.001), total time receiving MV (p < 0.001), time receiving MV before tracheostomy (p < 0.001), time receiving MV after tracheostomy (p < 0.001), and sedation durations. Similar results were also found in sub-population diagnosed as trauma, neurogenic or digestive disorders. Multinomial Logistic regression identified LT was independently associated with poor prognosis, whereas ET conferred no clinical benefits compared with IMT. CONCLUSIONS: In a mixed ICU population, delayed tracheostomy prolonged ICU and hospital stays, sedation durations, and time receiving MV. Multinomial logistic regression analysis identified delayed tracheostomies as independently correlated with worse outcomes. TRIAL REGISTRATION: ChiCTR2100043905. Registered 05 March 2021. http://www.chictr.org.cn/listbycreater.aspx.
Asunto(s)
Respiración Artificial , Traqueostomía , Humanos , Enfermedad Crítica , Estudios Retrospectivos , Centros de Atención Terciaria , ChinaRESUMEN
BACKGROUND: Circulating cell-free DNA (cfDNA) is a pool of short DNA fragments mainly released from apoptotic hematopoietic cells. Nevertheless, the precise physiological process governing the DNA fragmentation and molecular profile of cfDNA remains obscure. To dissect the DNA fragmentation process, we use a human leukemia cell line HL60 undergoing apoptosis to analyze the size distribution of DNA fragments by shallow whole-genome sequencing (sWGS). Meanwhile, we also scrutinize the size profile of plasma cfDNA in 901 healthy human subjects and 38 dogs, as well as 438 patients with six common cancer types by sWGS. RESULTS: Distinct size distribution profiles were observed in the HL60 cell pellet and supernatant, suggesting fragmentation is a stepwise process. Meanwhile, C-end preference was seen in both intracellular and extracellular cfDNA fragments. Moreover, the cfDNA profiles are characteristic and conserved across mammals. Compared with healthy subjects, distinct cfDNA profiles with a higher proportion of short fragments and lower C-end preference were found in cancer patients. CONCLUSIONS: Our study provides new insight into fragmentomics of circulating cfDNA processing, which will be useful for early diagnosis of cancer and surveillance during cancer progression.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Humanos , Animales , Perros , Fragmentación del ADN , ADN , Apoptosis , MamíferosRESUMEN
OBJECTIVE: To explore the differences in ultra-processed food (UPF) consumption across different socioeconomic status (SES) levels. METHODS: Data on UPF consumption (grams/day) were derived from the 2017-2018 National Health and Nutrition Examination Survey. The analysis controlled for age, marital status, race, and sex. A restricted cubic spline (RCS) model was applied to examine the nonlinear response curve. RESULTS: UPF consumption increased with higher poverty income ratio (PIR), the ratio of household income to the established poverty line. Compared to the low PIR group, the medium group showed a non-significant increase (ß = 34.23[95%CI: -28.81, 97.28], p = 0.287), while the high group exhibited a significant increase (ß = 115.15[95%CI: 43.53, 186.76], p = 0.002). A linear positive correlation was observed in RCS analysis (p-nonlinear = 0.166, p-overall < 0.001). CONCLUSIONS: The study highlights that higher SES is associated with greater consumption of UPF in the US. The findings suggest that policy interventions should take SES into consideration.
RESUMEN
PURPOSE: This is a retrospective study and aims to investigate the clinical outcomes of patients with knee varus deformity and extruded medial meniscus who underwent arthroscopic meniscus centralization and medial opening wedge high tibial osteotomy. METHODS: A total of 24 patients were included in the trial, and arthroscopy intraoperative photographs and standing preoperative and postoperative radiographs were taken to analyze the mechanical tibiofemoral angle and tibial plateau inclination. Postoperative complications and knee motion were recorded, and the surgical results were evaluated using the knee society score. RESULTS: The study observed four cases of surgery-related complications among all patients, but no major complications were reported. The surgery significantly improved knee flexion degrees and total knee range of motion. Satisfactory outcomes were shown in postoperative radiographs and secondary intraoperative photographs. The knee score increased from 39.6 ± 10.0 to 80.1 ± 9.0, and the functional score improved from 48.1 ± 6.9 to 89.4 ± 5.5. The preoperative tibial plateau inclination was 5.3 ± 0.7, while the postoperative data showed a decrease to 4.2 ± 0.7. The preoperative mechanical tibiofemoral angle was - 7.7 ± 1.0, and it improved in all patients postoperatively to 2.8 ± 0.9. CONCLUSION: By alternating the knee biomechanics and significantly improving symptoms and quality of life, arthroscopic medial meniscus centralization and medial open wedge high tibial osteotomy units are confirmed to be an effective alternative treatment for knee varus deformity.
Asunto(s)
Meniscos Tibiales , Osteoartritis de la Rodilla , Humanos , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/cirugía , Estudios de Seguimiento , Estudios Retrospectivos , Calidad de Vida , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/etiología , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Tibia/diagnóstico por imagen , Tibia/cirugía , Osteotomía/efectos adversos , Osteotomía/métodosRESUMEN
Thrombotic disease has been listed as the third most fatal vascular disease in the world. After decades of development, clinical thrombolytic drugs still cannot avoid the occurrence of adverse reactions such as bleeding. A number of studies have shown that the application of various nano-functional materials in thrombus-targeted drug delivery, combined with external stimuli, such as magnetic, near-infrared light, ultrasound, etc., enrich the drugs in the thrombus site and use the properties of nano-functional materials for collaborative thrombolysis, which can effectively reduce adverse reactions such as bleeding and improve thrombolysis efficiency. In this paper, the research progress of organic nanomaterials, inorganic nanomaterials, and biomimetic nanomaterials for drug delivery is briefly reviewed.