Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Opt Lett ; 49(7): 1737-1740, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560850

RESUMEN

Inference of joule-class THz radiation sources from microchannel targets driven with hundreds of joule, picosecond lasers is reported. THz sources of this magnitude are useful for nonlinear pumping of matter and for charged-particle acceleration and manipulation. Microchannel targets demonstrate increased laser-THz conversion efficiency compared to planar foil targets, with laser energy to THz energy conversion up to ∼0.9% in the best cases.

2.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397224

RESUMEN

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

3.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200052, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280559

RESUMEN

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280561

RESUMEN

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

5.
Phys Rev Lett ; 116(15): 155001, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27127972

RESUMEN

The interaction of a multipicosecond, kilojoule laser pulse with a surface of a solid target has been shown to produce electrons with energies far beyond the free-electron ponderomotive limit m_{e}c^{2}a_{0}^{2}/2. Particle-in-cell simulations indicate that an increase in the pulse duration from 1 to 10 ps leads to the formation of a low-density shelf (about 10% of the critical density). The shelf extends over 100 µm toward the vacuum side, with a nonstationary potential barrier forming in that area. Electrons reflected from the barrier gain superponderomotive energy from the potential. Some electrons experience an even greater energy gain due to ponderomotive acceleration when their "dephasing rate" R=γ-p_{x}/m_{e}c drops well below unity, thus increasing acceleration by a factor of 1/R. Both 1D and 2D simulations indicate that these mechanisms are responsible for the generation of extensive thermal distributions with T_{e}>10 MeV and a high-energy cutoff of hundreds of MeV.

6.
Phys Rev Lett ; 115(5): 054801, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274422

RESUMEN

The first self-consistent hybrid particle-in-cell (PIC) simulation of intense proton beam transport and energy deposition in solid-density matter is presented. Both the individual proton slowing-down and the collective beam-plasma interaction effects are taken into account with a new dynamic proton stopping power module that has been added to a hybrid PIC code. In this module, the target local stopping power can be updated at each time step based on its thermodynamic state. For intense proton beams, the reduction of target stopping power from the cold condition due to continuous proton heating eventually leads to broadening of the particle range and energy deposition far beyond the Bragg peak. For tightly focused beams, large magnetic field growth in collective interactions results in self-focusing of the beam and much stronger localized heating of the target.

7.
Phys Rev Lett ; 114(4): 045001, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679896

RESUMEN

This Letter presents the first experimental demonstration of the capability to launch shocks of several-hundred Mbar in spherical targets--a milestone for shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]. Using the temporal delay between the launching of the strong shock at the outer surface of the spherical target and the time when the shock converges at the center, the shock-launching pressure can be inferred using radiation-hydrodynamic simulations. Peak ablation pressures exceeding 300 Mbar are inferred at absorbed laser intensities of ∼3×10(15) W/cm2. The shock strength is shown to be significantly enhanced by the coupling of suprathermal electrons with a total converted energy of up to 8% of the incident laser energy. At the end of the laser pulse, the shock pressure is estimated to exceed ∼1 Gbar because of convergence effects.

8.
Phys Rev Lett ; 110(2): 025001, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23383907

RESUMEN

The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 10(20) W/cm2) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu Kα spot size) using a high- or mid-Z (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-Z transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition.

9.
Plant Dis ; 97(3): 429, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30722388

RESUMEN

Hosta (Hosta spp.) plants showing leaf deformation, puckering, and ink-bleed symptoms were collected in July 2012 from a park at Dongcheng district, Beijing, China. Three out of six samples tested positive for Hosta virus X (HVX) by immunostrip and double-antibody sandwich (DAS)-ELISA with HVX-specific serological reagents from Agdia Inc. (Elkhart, IN, USA). Filamentous viral particles were trapped and observed from the infected hosta leaf sap by immuno-serological electron microscopy (ISEM) (antibodies from Agdia). To confirm HVX infection, three ELISA-positive samples were analyzed by reverse transcription-PCR assay, using virus-specific primers HVXf (5'-ATCCGTTATCTACAGGGGACCAG-3') and HVXr (5'-TAAGTTAGTGGAACGGTTAGCCCGAT-3') that amplified a 1,067-bp fragment including the coat protein (CP) coding region. The CP nucleotide sequence comparisons showed 99% to 100% homology among the three isolates named HVXBJ4, HVXBJ5, and HVXBJ6 (GenBank Accession No. JX535292, JX535293, and JX535294) and with the HVX sequences previously reported in GenBank. HVX has been reported from the United States, Korea, the Netherlands, Poland, France, the Czech Republic, and New Zealand (1,2). To our knowledge, this is the first report of HVX infecting hosta plants in China. As an ornamental and medicinal plant, hosta has been cultivated in China for more than 2,000 years. The presence of HVX in Beijing is a potential threat to the landscape in the city. HVX can be spread by vegetative propagation material or mechanical contact (3). Hence, to cultivate HVX-free hosta and restrict the movement of HVX-infected hosta is vitally important in the future. HVX has become economically important in the world more recently. Globalization of trade in hosta plants has increased the risk of movement of HVX. The national plant protection organization should establish effective quarantine strategy and the growers take proper planting measures to avoid further spreading of this virus. References: (1) S. Currier et al. Plant Dis. 80:1040, 1996. (2) M. H. Park et al. Arch. Virol. 148:2039, 2003. (3) K. H. Ryu et al. Acta Hortic. 722:91, 2006.

10.
Sci Rep ; 13(1): 2227, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755138

RESUMEN

Contact and projection electron radiography of static targets was demonstrated using a laser-plasma accelerator driven by a kilojoule, picosecond-class laser as a source of relativistic electrons with an average energy of 20 MeV. Objects with areal densities as high as 7.7 g/cm2 were probed in materials ranging from plastic to tungsten, and radiographs with resolution as good as 90 µm were produced. The effects of electric fields produced by the laser ablation of the radiography objects were observed and are well described by an analytic expression relating imaging magnification change to electric-field strength.

11.
Plant Dis ; 96(8): 1232, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30727089

RESUMEN

Field-grown Echinacea purpurea plants showing necrosis, leaf roll, yellow mosaic, and mosaic symptoms in leaves were collected in June 2010 in Huairou, Beijing, China. ELISAs of extracts of four samples showed that one sample with mosaic symptoms had a positive reaction with Broad bean wilt virus 2 (BBWV-2) monoclonal antibody provided by Professor X. P. Zhou (1). The monoclonal antibody recognized the 44.7 kD coat protein subunit of BBWV-2. We used Chenopodium quinoa as an assay species to isolate the virus by sap transmissions and to maintain the virus strain. Sap from infected C. quinoa, when inoculated onto indicator plant species, induced the following symptoms: C. quinoa: local lesions in inoculated leaves, systemic chlorotic mottle in upper leaves, deformation, and apical necrosis; C. amaranticolor: chlorotic local lesions, systemic mosaic and leaf distortion; Nicotiana benthamiana: systemic mosaic; Gomphrena globosa: local purple spots in inoculated leaves and systemic infection in upper leaves; Tetragonia expansa: local lesions, but no symptoms of systemic infection; Physalis floridana: systemic mosaic. No symptoms were observed on Capsicum annuum, Datura stramonium, N. glutinosa, or N. tabacum cv. White Burley. To confirm BBWV-2 infection, total RNAs extracted from infected C. quinoa leaves were reverse transcripted to cDNA using oligo-dT primer (T17V). The primer pair Fab5'R1F (5'-AAATATTAAAACAAACAGCTTTCGTT-3') and Fab5'R1R (5'-TTCAAAGCTCGTGCCATNTYATTKGC-3') for specific detection of the Fabavirus genus (2) was used for PCR analysis. The amplified fragment is between the 5'-terminal non-translatable region (NTR) and the beginning of the coding region of RNA1. Amplicons of approximately the expected size (~391 bp) were produced from the virus-infected C. quinoa and a BBWV-2 positive control (ATCC PV131, PV0537). Amplicons of approximately the expected size (~350 bp) were produced from the BBWV-1 positive control (ATCC PV132). However, no such amplicons were observed from healthy C. quinoa plants and water control. The 391-bp amplicons of RNA1 obtained from the infected C. quinoa were cloned and sequenced. Comparison with sequences of other BBWV-2 isolates showed that the isolate we obtained (No. JX070674) had approximately 99% nt identity (98% amino acid identity) with Chinese BBWV-2 isolate BC (No. FJ485686.1) (3). As an ornamental and medicinal plant, E. purpurea is widely cultivated in northern China. Up until now, Tomato ring spot virus, Tobacco rattle virus, Cucumber mosaic virus, and Tomato spotted wilt virus have been detected or isolated from E. purpurea in the world (4). To our knowledge, this is the first report of BBWV-2 infecting E. purpurea in China. BBWV-2-infected E. purpurea may have less secondary metabolites, which could influence the quality and therapeutic efficacy of this herbal medicine. References: (1) L. Qing et al. Acta Microbiologica Sinica 40:166, 2000. (2) R. M. Ferrer et al. J. Virol. Methods 144:156, 2007. (3) C. Sui et al. Plant Dis. 93:844, 2009. (4) B. Dikova. Bulgarian J. Agric. Sci. 17:306, 2011.

12.
Phys Rev E ; 105(5-2): 055206, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706166

RESUMEN

Laser-accelerated proton beams are applicable to several research areas within high-energy density science, including warm dense matter generation, proton radiography, and inertial confinement fusion, which all involve transport of the beam through matter. We report on experimental measurements of intense proton beam transport through plastic foam blocks. The intense proton beam was accelerated by the 10ps, 700J OMEGA EP laser irradiating a curved foil target, and focused by an attached hollow cone. The protons then entered the foam block of density 0.38g/cm^{3} and thickness 0.55 or 1.00mm. At the rear of the foam block, a Cu layer revealed the cross section of the intense beam via proton- and hot electron-induced Cu-K_{α} emission. Images of x-ray emission show a bright spot on the rear Cu film indicative of a forward-directed beam without major breakup. 2D fluid-PIC simulations of the transport were conducted using a unique multi-injection source model incorporating energy-dependent beam divergence. Along with postprocessed calculations of the Cu-K_{α} emission profile, simulations showed that protons retain their ballistic transport through the foam and are able to heat the foam up to several keV in temperature. The total experimental emission profile for the 1.0mm foam agrees qualitatively with the simulated profile, suggesting that the protons indeed retain their beamlike qualities.

13.
Rev Sci Instrum ; 93(12): 123502, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586943

RESUMEN

A highly adaptable and robust terahertz (THz) energy meter is designed and implemented to detect energetic THz pulses from high-intensity (>1018 W/cm2) laser-plasma interactions on the OMEGA EP. THz radiation from the laser driven target is detected by a shielded pyrometer. A second identical pyrometer is used for background subtraction. The detector can be configured to detect THz pulses in the 1 mm to 30 µm (0.3- to 10-THz) range and pulse energies from joules to microjoules via changes in filtration, aperture size, and position. Additional polarization selective filtration can also be used to determine the THz pulse polarization. The design incorporates significant radiation and electromagnetic pulse shielding to survive and operate within the OMEGA EP radiation environment. We describe the design, operational principle, calibration, and testing of the THz energy meter. The pyrometers were calibrated using a benchtop laser and show linear sensitivity to up to 1000 nJ of absorbed energy. The initial results from four OMEGA EP THz experiments detected up to ∼15µJ at the detector, which can correspond to hundreds of mJ depending on THz emission and reflection models.

14.
Phys Rev E ; 103(6-1): 063208, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271736

RESUMEN

As an alternative inertial confinement fusion scheme, shock ignition requires a strong converging shock driven by a high-intensity laser pulse to ignite a precompressed fusion capsule. Understanding nonlinear laser-plasma instabilities is crucial to assess and improve the laser-shock energy coupling. Recent experiments conducted on the OMEGA EP laser facility have demonstrated that such instabilities can ∼100% deplete the first 0.5 ns of the high-intensity laser. Analyses of the observed laser-generated blast wave suggest that this pump-depletion starts at ∼0.02 critical density and progresses to 0.1-0.2 critical density, which is also confirmed by the time-resolved stimulated Raman backscattering spectra. The pump-depletion dynamics can be explained by the breaking of ion-acoustic waves in stimulated Brillouin scattering. Such pump depletion would inhibit the collisional laser energy absorption but may benefit the generation of hot electrons with moderate temperatures for electron shock ignition [Phys. Rev. Lett. 119, 195001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.195001].

15.
Phys Rev E ; 103(3-1): 033203, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862755

RESUMEN

The generation of hot, directional electrons via laser-driven stimulated Raman scattering (SRS) is a topic of great importance in inertial confinement fusion (ICF) schemes. Little recent research has been dedicated to this process at high laser intensity, in which back, side, and forward scatter simultaneously occur in high energy density plasmas, of relevance to, for example, shock ignition ICF. We present an experimental and particle-in-cell (PIC) investigation of hot electron production from SRS in the forward and near-forward directions from a single speckle laser of wavelength λ_{0}=1.053µm, peak laser intensities in the range I_{0}=0.2-1.0×10^{17}Wcm^{-2} and target electron densities between n_{e}=0.3-1.6%n_{c}, where n_{c} is the plasma critical density. As the intensity and density are increased, the hot electron spectrum changes from a sharp cutoff to an extended spectrum with a slope temperature T=34±1keV and maximum measured energy of 350 keV experimentally. Multidimensional PIC simulations indicate that the high energy electrons are primarily generated from SRS-driven electron plasma wave phase fronts with k vectors angled ∼50^{∘} with respect to the laser axis. These results are consistent with analytical arguments that the spatial gain is maximized at an angle which balances the tendency for the growth rate to be larger for larger scattered light wave angles until the kinetic damping of the plasma wave becomes important. The efficiency of generated high energy electrons drops significantly with a reduction in either laser intensity or target electron density, which is a result of the rapid drop in growth rate of Raman scattering at angles in the forward direction.

16.
Phys Rev Lett ; 105(9): 095001, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20868167

RESUMEN

Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10(15) W cm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi, Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v(N)/c(s)≈10.

17.
Phys Rev Lett ; 104(5): 055002, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20366771

RESUMEN

The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_{alpha} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of approximately 2-4 MeV electrons.

18.
Phys Rev E ; 101(3-1): 033206, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32289963

RESUMEN

Two-dimensional particle-in-cell simulations for laser plasma interaction with laser intensity of 10^{16}W/cm^{2}, plasma density range of 0.01-0.28n_{c}, and scale length of 230-330µm showed significant pump depletion of the laser energy due to stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the low-density region (n_{e}=0.01-0.2n_{c}). The simulations identified hot electrons generated by SRS in the low-density region with moderate energy and by two-plasmon-decay near n_{e}=0.25n_{c} with higher energy. The overall hot electron temperature (46 keV) and conversion efficiency (3%) were consistent with the experiment's measurements. The simulations also showed artificially reducing SBS would lead to stronger SRS and a softer hot-electron spectrum.

19.
Phys Rev E ; 102(2-1): 021201, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942368

RESUMEN

Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼10^{12}) PHELIX laser (150J, 10^{21}W/cm^{2}), we studied the acceleration of ions from 1-µm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.

20.
Sci Rep ; 10(1): 9415, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523004

RESUMEN

Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials. The proton beam can be focussed via target design to achieve exceptionally high flux, important for the applications mentioned. The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm2, producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the curved target, and the gap between was either empty or spanned with a structure. With a structured target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order temporal and 10 µm spatial resolution, revealing the fast-acting focussing electric field. Complementary particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA