Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.725
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(8): 1383-1394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942990

RESUMEN

The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.


Asunto(s)
Diferenciación Celular , Colitis , Células Dendríticas , Células T Auxiliares Foliculares , Animales , Células Dendríticas/inmunología , Colitis/inmunología , Colitis/patología , Células T Auxiliares Foliculares/inmunología , Ratones , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Células TH1/inmunología , Colon/inmunología , Colon/patología , Ratones Noqueados , Centro Germinal/inmunología , Ratones Transgénicos
2.
Immunity ; 52(6): 971-977.e3, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32413330

RESUMEN

The World Health Organization has declared SARS-CoV-2 virus outbreak a worldwide pandemic. However, there is very limited understanding on the immune responses, especially adaptive immune responses to SARS-CoV-2 infection. Here, we collected blood from COVID-19 patients who have recently become virus-free, and therefore were discharged, and detected SARS-CoV-2-specific humoral and cellular immunity in eight newly discharged patients. Follow-up analysis on another cohort of six patients 2 weeks post discharge also revealed high titers of immunoglobulin G (IgG) antibodies. In all 14 patients tested, 13 displayed serum-neutralizing activities in a pseudotype entry assay. Notably, there was a strong correlation between neutralization antibody titers and the numbers of virus-specific T cells. Our work provides a basis for further analysis of protective immunity to SARS-CoV-2, and understanding the pathogenesis of COVID-19, especially in the severe cases. It also has implications in developing an effective vaccine to SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Inmunidad Celular , Inmunidad Humoral , Neumonía Viral/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19 , Convalecencia , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Nat Chem Biol ; 20(10): 1341-1352, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38720107

RESUMEN

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.


Asunto(s)
Ferroptosis , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Animales , Línea Celular Tumoral , Coenzima A Ligasas/metabolismo , Ratones , Fosforilación , Resistencia a Antineoplásicos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
4.
Nature ; 578(7793): 70-74, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988510

RESUMEN

Spin dynamics in antiferromagnets has much shorter timescales than in ferromagnets, offering attractive properties for potential applications in ultrafast devices1-3. However, spin-current generation via antiferromagnetic resonance and simultaneous electrical detection by the inverse spin Hall effect in heavy metals have not yet been explicitly demonstrated4-6. Here we report sub-terahertz spin pumping in heterostructures of a uniaxial antiferromagnetic Cr2O3 crystal and a heavy metal (Pt or Ta in its ß phase). At 0.240 terahertz, the antiferromagnetic resonance in Cr2O3 occurs at about 2.7 tesla, which excites only right-handed magnons. In the spin-canting state, another resonance occurs at 10.5 tesla from the precession of induced magnetic moments. Both resonances generate pure spin currents in the heterostructures, which are detected by the heavy metal as peaks or dips in the open-circuit voltage. The pure-spin-current nature of the electrically detected signals is unambiguously confirmed by the reversal of the voltage polarity observed under two conditions: when switching the detector metal from Pt to Ta, reversing the sign of the spin Hall angle7-9, and when flipping the magnetic-field direction, reversing the magnon chirality4,5. The temperature dependence of the electrical signals at both resonances suggests that the spin current contains both coherent and incoherent magnon contributions, which is further confirmed by measurements of the spin Seebeck effect and is well described by a phenomenological theory. These findings reveal the unique characteristics of magnon excitations in antiferromagnets and their distinctive roles in spin-charge conversion in the high-frequency regime.

5.
PLoS Genet ; 19(9): e1010911, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708138

RESUMEN

Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.


Asunto(s)
Artrópodos , Tetranychidae , Animales , Proteómica , Xenobióticos , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción , Tetranychidae/genética
6.
Gastroenterology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147169

RESUMEN

BACKGROUND & AIMS: Peritoneal metastasis (PM) in gastric cancer (GC) is associated with poor prognosis and significant morbidity. We sought to understand the genomic, transcriptomic, and tumor microenvironment (TME) features that contribute to peritoneal organotropism in GC. METHODS: We conducted a comprehensive multi-omic analysis of 548 samples from 326 patients, including primary tumors, matched normal tissues; peritoneal metastases, and adjacent-normal peritoneal tissues. We used whole exome sequencing, whole transcriptome sequencing, and digital spatial profiling to investigate molecular alterations, gene expression patterns, and TME characteristics associated with PM. RESULTS: Our analysis identified specific genomic alterations in primary tumors, including mutations in ELF3, CDH1, and PIGR, and TME signatures, such as stromal infiltration and M2 macrophage enrichment, associated with increased risk of PM. We observed distinct transcriptional programs and immune compositions in GCPM compared with liver metastases, highlighting the importance of the TME in transcoelomic metastasis. We found differential expression of therapeutic targets between primary tumors and PM, with lower CLDN18.2 and FGFR2b expression in PM. We unravel the roles of the TME in niche reprogramming within the peritoneum, and provide evidence of pre-metastatic niche conditioning even in early GC without clinical PM. These findings were further validated using a humanized mouse model, which demonstrated niche remodeling in the peritoneum during transcoelomic metastasis. CONCLUSION: Our study provides a comprehensive molecular characterization of GCPM and unveils key biological principles underlying transcoelomic metastasis. The identified predictive markers, therapeutic targets, and TME alterations offer potential avenues for targeted interventions and improved patient outcomes.

7.
Biostatistics ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412139

RESUMEN

Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.

8.
Nat Mater ; 23(8): 1115-1122, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867019

RESUMEN

Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic-electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm-2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.


Asunto(s)
Biomarcadores , Epidermis , Hidrogeles , Dispositivos Electrónicos Vestibles , Biomarcadores/sangre , Biomarcadores/análisis , Humanos , Hidrogeles/química , Epidermis/metabolismo , Electrónica , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
9.
PLoS Genet ; 18(4): e1010144, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404950

RESUMEN

Polyglutamylation is a dynamic posttranslational modification where glutamate residues are added to substrate proteins by 8 tubulin tyrosine ligase-like (TTLL) family members (writers) and removed by the 6 member Nna1/CCP family of carboxypeptidases (erasers). Genetic disruption of polyglutamylation leading to hyperglutamylation causes neurodegenerative phenotypes in humans and animal models; the best characterized being the Purkinje cell degeneration (pcd) mouse, a mutant of the gene encoding Nna1/CCP1, the prototypic eraser. Emphasizing the functional importance of the balance between glutamate addition and elimination, loss of TTLL1 prevents Purkinje cell degeneration in pcd. However, whether Ttll1 loss protects other vulnerable neurons in pcd, or if elimination of other TTLLs provides protection is largely unknown. Here using a mouse genetic rescue strategy, we characterized the contribution of Ttll1, 4, 5, 7, or 11 to the degenerative phenotypes in cerebellum, olfactory bulb and retinae of pcd mutants. Ttll1 deficiency attenuates Purkinje cell loss and function and reduces olfactory bulb mitral cell death and retinal photoreceptor degeneration. Moreover, degeneration of photoreceptors in pcd is preceded by impaired rhodopsin trafficking to the rod outer segment and likely represents the causal defect leading to degeneration as this too is rescued by elimination of TTLL1. Although TTLLs have similar catalytic properties on model substrates and several are highly expressed in Purkinje cells (e.g. TTLL5 and 7), besides TTLL1 only TTLL4 deficiency attenuated degeneration of Purkinje and mitral cells in pcd. Additionally, TTLL4 loss partially rescued photoreceptor degeneration and impaired rhodopsin trafficking. Despite their common properties, the polyglutamylation profile changes promoted by TTLL1 and TTLL4 deficiencies in pcd mice are very different. We also report that loss of anabolic TTLL5 synergizes with loss of catabolic Nna1/CCP1 to promote photoreceptor degeneration. Finally, male infertility in pcd is not rescued by loss of any Ttll. These data provide insight into the complexity of polyglutamate homeostasis and function in vivo and potential routes to ameliorate disorders caused by disrupted polyglutamylation.


Asunto(s)
Células de Purkinje , Degeneración Retiniana , Animales , Proteínas de Unión al GTP/genética , Ácido Glutámico/metabolismo , Masculino , Fenotipo , Células de Purkinje/metabolismo , Degeneración Retiniana/metabolismo , Rodopsina/genética
10.
Gut ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438124

RESUMEN

BACKGROUND: The elevation of IQGAP3 expression in diverse cancers indicates a key role for IQGAP3 in carcinogenesis. Although IQGAP3 was established as a proliferating stomach stem cell factor and a regulator of the RAS-ERK pathway, how it drives cancer growth remains unclear. OBJECTIVE: We define the function of IQGAP3 in gastric cancer (GC) development and progression. DESIGN: We studied the phenotypic changes caused by IQGAP3 knockdown in three molecularly diverse GC cell lines by RNA-sequencing. In vivo tumorigenesis and lung metastasis assays corroborated IQGAP3 as a mediator of oncogenic signalling. Spatial analysis was performed to evaluate the intratumoral transcriptional and functional differences between control tumours and IQGAP3 knockdown tumours. RESULTS: Transcriptomic profiling showed that IQGAP3 inhibition attenuates signal transduction networks, such as KRAS signalling, via phosphorylation blockade. IQGAP3 knockdown was associated with significant inhibition of MEK/ERK signalling-associated growth factors, including TGFß1, concomitant with gene signatures predictive of impaired tumour microenvironment formation and reduced metastatic potential. Xenografts involving IQGAP3 knockdown cells showed attenuated tumorigenesis and lung metastasis in immunodeficient mice. Accordingly, immunofluorescence staining revealed significant reductions of TGFß/SMAD signalling and αSMA-positive stromal cells; digital spatial analysis indicated that IQGAP3 is indispensable for the formation of two phenotypically diverse cell subpopulations, which played crucial but distinct roles in promoting oncogenic functions. CONCLUSION: IQGAP3 knockdown suppressed the RAS-TGFß signalling crosstalk, leading to a significant reduction of the tumour microenvironment. In particular, IQGAP3 maintains functional heterogeneity of cancer cells to enhance malignant growth. IQGAP3 is thus a highly relevant therapy target in GC.

11.
J Mol Cell Cardiol ; 186: 57-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984156

RESUMEN

BACKGROUND: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS: We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS: We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION: Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Ratones , Animales , Células Espumosas/metabolismo , Proproteína Convertasa 9/metabolismo , Macrófagos/metabolismo , Aterosclerosis/patología , Lipoproteínas LDL/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
12.
Genet Epidemiol ; 47(8): 617-636, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37822029

RESUMEN

Cancer is a disease driven by a combination of inherited genetic variants and somatic mutations. Recently available large-scale sequencing data of cancer genomes have provided an unprecedented opportunity to study the interactions between them. However, previous studies on this topic have been limited by simple, low statistical power tests such as Fisher's exact test. In this paper, we design data-adaptive and pathway-based tests based on the score statistic for association studies between somatic mutations and germline variations. Previous research has shown that two single-nucleotide polymorphism (SNP)-set-based association tests, adaptive sum of powered score (aSPU) and data-adaptive pathway-based (aSPUpath) tests, increase the power in genome-wide association studies (GWASs) with a single disease trait in a case-control study. We extend aSPU and aSPUpath to multi-traits, that is, somatic mutations of multiple genes in a cohort study, allowing extensive information aggregation at both SNP and gene levels. p $p$ -values from different parameters assuming varying genetic architecture are combined to yield data-adaptive tests for somatic mutations and germline variations. Extensive simulations show that, in comparison with some commonly used methods, our data-adaptive somatic mutations/germline variations tests can be applied to multiple germline SNPs/genes/pathways, and generally have much higher statistical powers while maintaining the appropriate type I error. The proposed tests are applied to a large-scale real-world International Cancer Genome Consortium whole genome sequencing data set of 2583 subjects, detecting more significant and biologically relevant associations compared with the other existing methods on both gene and pathway levels. Our study has systematically identified the associations between various germline variations and somatic mutations across different cancer types, which potentially provides valuable utility for cancer risk prediction, prognosis, and therapeutics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Humanos , Estudio de Asociación del Genoma Completo/métodos , Estudios de Casos y Controles , Estudios de Cohortes , Modelos Genéticos , Neoplasias/genética , Mutación , Células Germinativas , Polimorfismo de Nucleótido Simple
13.
J Am Chem Soc ; 146(13): 9404-9412, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38504578

RESUMEN

The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.

14.
Hum Mol Genet ; 31(18): 3120-3132, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35552711

RESUMEN

Plasma levels of fibrinogen, coagulation factors VII and VIII and von Willebrand factor (vWF) are four intermediate phenotypes that are heritable and have been associated with the risk of clinical thrombotic events. To identify rare and low-frequency variants associated with these hemostatic factors, we conducted whole-exome sequencing in 10 860 individuals of European ancestry (EA) and 3529 African Americans (AAs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the National Heart, Lung and Blood Institute's Exome Sequencing Project. Gene-based tests demonstrated significant associations with rare variation (minor allele frequency < 5%) in fibrinogen gamma chain (FGG) (with fibrinogen, P = 9.1 × 10-13), coagulation factor VII (F7) (with factor VII, P = 1.3 × 10-72; seven novel variants) and VWF (with factor VIII and vWF; P = 3.2 × 10-14; one novel variant). These eight novel rare variant associations were independent of the known common variants at these loci and tended to have much larger effect sizes. In addition, one of the rare novel variants in F7 was significantly associated with an increased risk of venous thromboembolism in AAs (Ile200Ser; rs141219108; P = 4.2 × 10-5). After restricting gene-based analyses to only loss-of-function variants, a novel significant association was detected and replicated between factor VIII levels and a stop-gain mutation exclusive to AAs (rs3211938) in CD36 molecule (CD36). This variant has previously been linked to dyslipidemia but not with the levels of a hemostatic factor. These efforts represent the largest integration of whole-exome sequence data from two national projects to identify genetic variation associated with plasma hemostatic factors.


Asunto(s)
Factor VIII , Hemostáticos , Factor VII/genética , Factor VIII/genética , Fibrinógeno/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Secuenciación del Exoma , Factor de von Willebrand/análisis , Factor de von Willebrand/genética
15.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541526

RESUMEN

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Asunto(s)
Adenoma , Ceramidas , Humanos , Animales , Ratones , Ceramidas/metabolismo , Ácidos Grasos , Esfingolípidos/metabolismo , Serina C-Palmitoiltransferasa/metabolismo
16.
Anal Chem ; 96(27): 10911-10919, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916969

RESUMEN

The integration of electrochemistry with nuclear magnetic resonance (NMR) spectroscopy recently offers a powerful approach to understanding oxidative metabolism, detecting reactive intermediates, and predicting biological activities. This combination is particularly effective as electrochemical methods provide excellent mimics of metabolic processes, while NMR spectroscopy offers precise chemical analysis. NMR is already widely utilized in the quality control of pharmaceuticals, foods, and additives and in metabolomic studies. However, the introduction of additional and external connections into the magnet has posed challenges, leading to signal deterioration and limitations in routine measurements. Herein, we report an anti-interference compact in situ electrochemical NMR system (AICISENS). Through a wireless strategy, the compact design allows for the independent and stable operation of electrochemical NMR components with effective interference isolation. Thus, it opens an avenue toward easy integration into in situ platforms, applicable not only to laboratory settings but also to fieldwork. The operability, reliability, and versatility were validated with a series of biomimetic assessments, including measurements of microbial electrochemical systems, functional foods, and simulated drug metabolisms. The robust performance of AICISENS demonstrates its high potential as a powerful analytical tool across diverse applications.


Asunto(s)
Técnicas Electroquímicas , Espectroscopía de Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Tecnología Inalámbrica
17.
Biochem Biophys Res Commun ; 725: 150272, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901224

RESUMEN

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Ketamina , Parvalbúminas , Corteza Prefrontal , Sinapsis , Animales , Ketamina/farmacología , Ketamina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Masculino , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ratones Endogámicos C57BL , Antagonistas de Aminoácidos Excitadores/farmacología
18.
Cancer Immunol Immunother ; 73(5): 85, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554185

RESUMEN

TGF-ß1 and TGF-ßR1 play important roles in immune and inflammatory responses. Genetic variants of TGF-ß1 rs1800470 and TGF-ßR1 rs334348 have emerged as potentially prognostic biomarkers for HPV-related head and neck cancer, while their prognostic effect on survival of smoking-related head and neck cancer remains unknown. This study included 1403 patients with smoking-related head and neck cancer, and all these patients were genotyped for TGF-ß1 rs1800470 and TGF-ßR1 rs334348. Both univariate and multivariate analyses were performed to evaluate associations between the two functional genetic variants in microRNA binding sites of TGF-ß1 and TGF-ßR1 and survivals. Patients with TGF-ß1 rs1800470 CT or CC genotype had 30-35% risk reductions for OS, DSS, and DFS compared to patients with TT genotype among overall patients, ever smokers, and patients administered chemoradiation. Furthermore, patients with TGF-ßR1 rs334348 GA or GG genotype had significant 50-60% risk reductions for OS, DSS, and DFS compared to patients with AA genotype among overall patients and patients administered chemoradiation; among ever smokers, the risk reductions even reached 60-70%. The TCGA dataset was used for validation. These findings suggest that TGF-ß1 rs1800470 and TGF-ßR1 rs334348 significantly affect survival outcomes in patients with smoking-related head and neck cancer, especially in the subgroups of ever smokers and patients treated with chemoradiation. These genetic variants may serve as prognostic indicators for patients with smoking-related head and neck cancer and could play a role in advancing the field of personalized chemoradiation, thereby improving patient survival and quality of life.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , MicroARNs/genética , Factor de Crecimiento Transformador beta1/genética , Calidad de Vida , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Fumar/efectos adversos
19.
Small ; 20(3): e2305848, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670215

RESUMEN

Hydrophobic ionogel has attracted much attention in underwater sensing as the artificial electronic skins and wearable sensors. However, when the low conductive ionogel-based sensor works in the marine environment, the salty seawater weakens its sensing performance, which is difficult to recognize. Herein, a salt-adaptively conductive ionogel with high submarine strain sensitivity is reported. Based on the preliminary improvement via the proton conduction mechanism, the conductivity of the ionogel further increases with the surrounding salinity rising up since the salt-induced dissociation phenomenon, which is described as the environmental salt-adaptive feature. In seawater, the conductivity of the ionogel is as high as 2.90 × 10-1 S m-1 . Significantly, with its long-term underwater stability and adhesion, the resultant ionogel-based sensor features prominent strain sensing performance (gauge factor: 1.12) while combining with various soft actuators in the marine environment. The ionogel-based sensor is capable of monitoring human breath frequency, human actions, and the locomotion of soft actuators, demonstrating its great potential in diving detection and intelligent preceptive soft robotics for marine environmental protection and exploration.

20.
Small ; : e2403298, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39428890

RESUMEN

Surgical site infection and insufficient osseointegration are notable risks factors associated with oral implant surgery. In this study, the development of a polarized calcium titanate (CT-P) coating for titanium surfaces is proposed as a solution to these problems. The coating generated electrical stimulation (ES) can inhibit pro-inflammatory M1-type macrophage polarization and promote anti-inflammatory M2-type macrophage polarization, resulting in favorable bone immunomodulation. The ES generated by the coating can match the physiological electrical potential that will change during bone repair, thereby promoting osseointegration in vivo. In addition, the system can also achieve on-demand antibacterial activity, mainly depending on the CT-P coating responding to ultrasound (US) irradiation to produce reactive oxygen species (ROS) and remove Staphylococcus aureus (S. aureus) on the surface of the implant. In conclusion, this work provides valuable insights for the development and clinical application of highly efficient electroactive coatings, as well as novel solutions for the selective treatment of bacterial infections in the surgical area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA