Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 257: 121707, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705067

RESUMEN

Solar steam generation (SSG) using hydrogels is emerging as a promising technology for clean water production. Herein, a novel oxygen-doped microporous carbon hydrogel (OPCH), rich in hydrophilic groups and micropores, has been synthesized from microalgae to optimize SSG. OPCH outperforms hydrogels with hydrophobic porous carbon or nonporous hydrophilic biochar, significantly reducing water's evaporation enthalpy from 2216.06 to 1107.88 J g-1 and activating 42.3 g of water per 100 g for evaporation, resulting in an impressive evaporation rate of 2.44 kg m-2 h-1 under one sun. A detailed investigation into the synergistic effects of hydrophilic groups and micropores on evaporation via a second derivative thermogravimetry method revealed two types of bonded water contributing to enthalpy reduction. Molecular dynamics simulations provided further insights, revealing that the hydrophilic micropores considerably decrease both the number and the lifetime of hydrogen bonds among water molecules. This dual effect not only reduces the energy barrier for evaporation but also enhances the kinetic energy needed for the phase transition, significantly boosting the water evaporation process. The sustained high evaporation rates of OPCH, observed across multiple cycles and under varying salinity conditions, underscore its potential as a highly efficient and sustainable solution for SSG applications.


Asunto(s)
Carbono , Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Vapor , Agua , Hidrogeles/química , Carbono/química , Porosidad , Agua/química , Simulación de Dinámica Molecular
2.
Nanoscale Res Lett ; 12(1): 59, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28181166

RESUMEN

Thioglycolic acid-capped CdTe x S(1 - x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTe x S(1 - x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTe x S(1 - x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTe x S(1 - x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L'Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTe x S(1 - x) QDs can be excited by blue or near-UV regions. This feature presents CdTe x S(1 - x) QDs with an advantage over wavelength converters for LEDs.

3.
Protein Pept Lett ; 18(10): 1028-34, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21592077

RESUMEN

Sucrose isomerase (SI) from Erwinia rhapontici is an intramolecular isomerase that is normally used to synthesise isomaltulose from sucrose by a mechanism of intramolecular transglycosylation. In this study, it was found that SI could synthesise α-arbutin using hydroquinone and sucrose as substrates, via an intermolecular transglycosylation reaction. Five phenylalanine residues (F185, F186, F205, F297, and F321) in the catalytic pocket of SI were chosen for sitedirected mutagenesis. Mutants F185I, F321I, and F321W, whose hydrolytic activities were enhanced after the mutation, could synthesise α-arbutin through intermolecular transglycosylation with a more than two-fold increase in the molar transfer ratio compared with wild type SI. The F297A mutant showed a strong ability to synthesise a novel α-arbutin derivative and a four-fold increase in its specific activity for intermolecular transglycosylation over the wild type. Our findings may lead to a new way to synthesise novel glucoside products such as α-arbutin derivatives by simply manipulating the Phe residues in the catalytic pocket. From the structure superposition, our strategy of manipulating these Phe residues may be applicable to other similar transglycosylating enzymes.


Asunto(s)
Arbutina/biosíntesis , Erwinia/enzimología , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA