Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 321(1): 152-168, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063042

RESUMEN

Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.


Asunto(s)
Glioma , Piroptosis , Humanos , Glioma/terapia , Apoptosis , Muerte Celular , Inmunoterapia , Inmunosupresores , Microambiente Tumoral
2.
Nature ; 592(7853): 296-301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731931

RESUMEN

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Asunto(s)
Aterosclerosis/patología , Hematopoyesis Clonal , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Médula Ósea/metabolismo , Caspasa 1/metabolismo , Caspasas Iniciadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1beta/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Fosfato/metabolismo , Piroptosis , RNA-Seq , Análisis de la Célula Individual
3.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39256197

RESUMEN

Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , MicroARNs , MicroARNs/genética , Humanos , Biología Computacional/métodos , Aprendizaje Automático , Algoritmos , Predisposición Genética a la Enfermedad
4.
J Biol Chem ; 300(4): 106791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403247

RESUMEN

DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Eucariontes , Humanos , Eucariontes/genética , Eucariontes/metabolismo , Animales , ADN/metabolismo , ADN/genética , ADN/química
5.
Plant J ; 118(2): 423-436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184843

RESUMEN

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Asunto(s)
Gossypium , Factores de Transcripción , Gossypium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Fosfatidicos/metabolismo , Fibra de Algodón , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Biostatistics ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39449078

RESUMEN

This paper introduces functional quantile principal component analysis (FQPCA), a dimensionality reduction technique that extends the concept of functional principal components analysis (FPCA) to the examination of participant-specific quantiles curves. Our approach borrows strength across participants to estimate patterns in quantiles, and uses participant-level data to estimate loadings on those patterns. As a result, FQPCA is able to capture shifts in the scale and distribution of data that affect participant-level quantile curves, and is also a robust methodology suitable for dealing with outliers, heteroscedastic data or skewed data. The need for such methodology is exemplified by physical activity data collected using wearable devices. Participants often differ in the timing and intensity of physical activity behaviors, and capturing information beyond the participant-level expected value curves produced by FPCA is necessary for a robust quantification of diurnal patterns of activity. We illustrate our methods using accelerometer data from the National Health and Nutrition Examination Survey, and produce participant-level 10%, 50%, and 90% quantile curves over 24 h of activity. The proposed methodology is supported by simulation results, and is available as an R package.

7.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37385595

RESUMEN

Allergies have become an emerging public health problem worldwide. The most effective way to prevent allergies is to find the causative allergen at the source and avoid re-exposure. However, most of the current computational methods used to identify allergens were based on homology or conventional machine learning methods, which were inefficient and still had room to be improved for the detection of allergens with low homology. In addition, few methods based on deep learning were reported, although deep learning has been successfully applied to several tasks in protein sequence analysis. In the present work, a deep neural network-based model, called DeepAlgPro, was proposed to identify allergens. We showed its great accuracy and applicability to large-scale forecasts by comparing it to other available tools. Additionally, we used ablation experiments to demonstrate the critical importance of the convolutional module in our model. Moreover, further analyses showed that epitope features contributed to model decision-making, thus improving the model's interpretability. Finally, we found that DeepAlgPro was capable of detecting potential new allergens. Overall, DeepAlgPro can serve as powerful software for identifying allergens.


Asunto(s)
Aprendizaje Profundo , Hipersensibilidad , Humanos , Alérgenos , Redes Neurales de la Computación , Proteínas/metabolismo
8.
Blood ; 141(25): 3078-3090, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36796022

RESUMEN

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.


Asunto(s)
Factores de Unión al Sitio Principal , Leucemia Mieloide Aguda , Humanos , Regulación hacia Abajo , Factores de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Edición de ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Leucemia Mieloide Aguda/genética , Adenosina/metabolismo
9.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741271

RESUMEN

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Asunto(s)
Infartos del Tronco Encefálico , Cerebelo , Imagen por Resonancia Magnética , Vías Nerviosas , Puente , Humanos , Masculino , Femenino , Persona de Mediana Edad , Cerebelo/fisiopatología , Cerebelo/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Puente/diagnóstico por imagen , Puente/fisiopatología , Infartos del Tronco Encefálico/fisiopatología , Infartos del Tronco Encefálico/diagnóstico por imagen , Anciano , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
10.
Nano Lett ; 24(12): 3793-3800, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484388

RESUMEN

Plasmonic superstructures hold great potential in encrypted information chips but are still unsatisfactory in terms of resolution and maneuverability because of the limited fabrication strategies. Here, we develop an antielectric potential method in which the interfacial energy from the modification of 5-amino-2-mercapto benzimidazole (AMBI) ligand is used to overcome the electric resistance between the Au nanospheres (NSs) and substrate, thereby realizing the in situ growth of a Au-Ag heterodimers array in large scale. The morphology, number, and size of Ag domains on Au units can be controlled well by modulating the reaction kinetics and thermodynamics. Experiments and theoretical simulations reveal that patterned 3D Au-2D Ag and 3D Au-3D Ag dimer arrays with line widths of 400 nm exhibit cerulean and cyan colors, respectively, and achieve fine color modulation and ultrahigh information resolution. This work not only develops a facile strategy for fabricating patterned plasmonic superstructures but also pushes the plasmon-based high-resolution encrypted information chip into more complex applications.

11.
Am J Respir Cell Mol Biol ; 70(4): 247-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117250

RESUMEN

BCL-2 family members are known to be implicated in survival in numerous biological settings. Here, we provide evidence that in injury and repair processes in lungs, BCL-2 mainly acts to attenuate endoplasmic reticulum (ER) stress and limit extracellular matrix accumulation. Days after an intratracheal bleomycin challenge, mice lose a fraction of their alveolar type II epithelium from terminal ER stress driven by activation of the critical ER sensor and stress effector IRE1α. This fraction is dramatically increased by BCL-2 inhibition, because IRE1α activation is dependent on its physical association with the BCL-2-proapoptotic family member BAX, and we found BCL-2 to disrupt this association in vitro. In vivo, navitoclax (a BCL-2/BCL-xL inhibitor) given 15-21 days after bleomycin challenge evoked strong activation of IRE-1α in mesenchymal cells and markers of ER stress, but not apoptosis. Remarkably, after BCL-2 inhibition, bleomycin-exposed mice demonstrated persistent collagen accumulation at Day 42, compared with resolution in controls. Enhanced fibrosis proved to be due to the RNAase activity of IRE1α downregulating MRC2 mRNA and protein, a mediator of collagen turnover. The critical role of MRC2 was confirmed in precision-cut lung slice cultures of Day-42 lungs from bleomycin-exposed wild-type and MRC2 null mice. Soluble and tissue collagen accumulated in precision-cut lung slice cultures from navitoclax-treated, bleomycin-challenged mice compared with controls, in a manner nearly identical to that of challenged but untreated MRC2 null mice. Thus, apart from mitochondrial-based antiapoptosis, BCL-2 functions to attenuate ER stress responses, fostering tissue homeostasis and injury repair.


Asunto(s)
Compuestos de Anilina , Fibrosis Pulmonar , Sulfonamidas , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Ratones Noqueados , Colágeno/metabolismo , Bleomicina/farmacología
12.
Proteins ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392104

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious immunosuppressive diseases in the world. The nonstructural protein Nsp4 can be used as an ideal target for anti-PRRSV replication inhibitors. However, little is known about potential inhibitors that target Nsp4 to affect PRRSV replication. The purpose of this study was to screen potential natural inhibitors that affect PRRSV replication by inhibiting Nsp4. Five compounds with strong binding affinity to Nsp4 were selected by structure-based molecular docking method. The complexes of naringin dihydrochalcone (NDC), agathisflavone (AGT), and amentoflavone (AMF) with Nsp4 were stable throughout the molecular dynamics simulation. According to MM/PBSA analysis, the free energies of binding of NDC, AGT, and AMF to Nsp4 were less than-30 Kcal/mol. In conclusion, these three compounds are worthy of further investigation as novel inhibitors of PRRSV. This study provides a theoretical basis for the development of anti-PRRSV natural drugs.

13.
Stroke ; 55(5): 1370-1380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572656

RESUMEN

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

14.
Cancer ; 130(13): 2260-2271, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38620053

RESUMEN

Tagraxofusp is a first-in-class CD123-directed conjugate of an amended diphtheria toxin platform and recombinant interleukin 3. Binding and subsequent internalization of the drug result in cell death via disruption of intracellular protein synthesis. CD123 is a surface marker that is expressed in several hematological malignancies, especially blastic plasmacytoid dendritic cell neoplasm (BPDCN), where its expression is ubiquitous. A pivotal study of tagraxofusp in BPDCN resulted in its approval for the treatment of BPDCN, the first treatment approved for this indication. Since the introduction of tagraxofusp, research has focused on the management of adverse effects, combination therapy to improve outcomes in fit patients, and dosing and combination strategies to mitigate toxicities while preserving efficacy, especially among older patients. The successful targeting of CD123 in BPDCN has also encouraged research into a variety of other CD123-positive hematological neoplasms, including acute myeloid leukemia (AML), and informed the development of other novel agents targeting CD123. This review examines the clinical data leading to the development and approval of tagraxofusp in BPDCN, how it is being used in combination to improve outcomes in BPDCN and AML, and its developing role in other hematological malignancies.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-3 , Humanos , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Proteínas Recombinantes de Fusión
15.
Br J Haematol ; 205(1): 30-47, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724457

RESUMEN

The treatment landscape of acute myeloid leukaemia (AML) is evolving rapidly. Venetoclax in combination with intensive chemotherapy or doublets or triplets with targeted or immune therapies is the focus of numerous ongoing trials. The development of mutation-targeted therapies has greatly enhanced the treatment armamentarium, with FLT3 inhibitors and isocitrate dehydrogenase inhibitors improving outcomes in frontline and relapsed/refractory (RR) AML, and menin inhibitors showing efficacy in RR NPM1mut and KMT2A-rearranged AML. With so many new drugs approved, the number of potential combinatorial approaches to leverage the maximal benefit of these agents has increased dramatically, while at the same time introducing clinical challenges, such as key preclinical and clinical data supporting the development of combinatorial therapy, how to optimally combine or sequence these novel agents, how to optimise dose and duration to maintain safety while enhancing efficacy, the optimal duration of therapy and the role of measurable residual disease in decision-making in both intensive and low-intensity therapy settings. In this review, we will outline the evidence leading to the approval of key agents in AML, their on-label current approvals and how they may be optimally combined in a safe and deliverable fashion to further improve outcomes in AML.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
16.
Br J Haematol ; 204(6): 2259-2263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603594

RESUMEN

Targeted therapy development for acute myeloid leukaemia (AML) requires an understanding of specific expression profiles. We collected flow cytometry data on 901 AML patients and recorded aberrant CD7 expression on leukaemic blasts. 263 (29.2%) had blasts positive for CD7. CD7+ AML was more likely to be adverse risk (64.6% vs. 55.6%, p = 0.0074) and less likely to be favourable risk (15.2% vs. 24.1%, p = 0.0074) by European LeukemiaNet 2022 criteria. Overall survival was inferior (11.9 [95% CI, 9.7-15.9] vs. 19.0 months [95% CI, 16.1-23.0], p = 0.0174). At relapse, 30.4% lost and 19.0% gained CD7, suggesting moderate instability over time.


Asunto(s)
Antígenos CD7 , Leucemia Mieloide Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Antígenos CD7/análisis , Antígenos CD7/metabolismo , Citometría de Flujo , Inmunofenotipificación , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Pronóstico
17.
J Gene Med ; 26(7): e3718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979822

RESUMEN

BACKGROUND: Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS: The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS: ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS: ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Flavonoides , Activación de Macrófagos , Macrófagos Alveolares , Farmacología en Red , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Ratones , Flavonoides/farmacología , Flavonoides/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Activación de Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Ovalbúmina , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Femenino
18.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605285

RESUMEN

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Asunto(s)
Alcaloides , Plantas Medicinales , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinales/metabolismo , Cromatografía Liquida/métodos , Lignina/metabolismo , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Alcaloides/metabolismo , Almidón/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas
19.
Radiology ; 311(1): e230459, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38563669

RESUMEN

Background Microwave ablation (MWA) is currently under preliminary investigation for the treatment of multifocal papillary thyroid carcinoma (PTC) and has shown promising treatment efficacy. Compared with surgical resection (SR), MWA is minimally invasive and could preserve thyroid function. However, a comparative analysis between MWA and SR is warranted to draw definitive conclusions. Purpose To compare MWA and SR for preoperative US-detected T1N0M0 multifocal PTC in terms of overall and 1-, 3-, and 5-year progression-free survival rates and complication rates. Materials and Methods In this retrospective study, 775 patients with preoperative US-detected T1N0M0 multifocal PTC treated with MWA or SR across 10 centers between May 2015 and December 2021 were included. Propensity score matching (PSM) was performed for patients in the MWA and SR groups, followed by comparisons between the two groups. The primary outcomes were overall and 1-, 3-, and 5-year progression-free survival (PFS) rates and complication rates. Results After PSM, 229 patients (median age, 44 years [IQR 36.5-50.5 years]; 179 female) in the MWA group and 453 patients (median age, 45 years [IQR 37-53 years]; 367 female) in the SR group were observed for a median of 20 months (range, 12-74 months) and 26 months (range, 12-64 months), respectively. MWA resulted in less blood loss, shorter incision length, and shorter procedure and hospitalization durations (all P < .001). There was no evidence of differences in overall and 1-, 3-, or 5-year PFS rates (all P > .05) between MWA and SR (5-year rate, 77.2% vs 83.1%; P = .36) groups. Permanent hoarseness (2.2%, P = .05) and hypoparathyroidism (4.0%, P = .005) were encountered only in the SR group. Conclusion There was no evidence of a significant difference in PFS rates between MWA and SR for US-detected multifocal T1N0M0 PTC, and MWA resulted in fewer complications. Therefore, MWA is a feasible option for selected patients with multifocal T1N0M0 PTC. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Georgiades in this issue.


Asunto(s)
Microondas , Neoplasias de la Tiroides , Humanos , Femenino , Adulto , Persona de Mediana Edad , Microondas/uso terapéutico , Estudios Retrospectivos , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/cirugía , Hospitalización , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/cirugía
20.
Small ; : e2407495, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350444

RESUMEN

The rational design of pH-universal electrocatalyst with high-efficiency, low-cost and large current output suitable for industrial hydrogen evolution reaction (HER) is crucial for hydrogen production via water splitting. Herein, phase engineering of ruthenium (Ru) electrocatalyst comprised of metastable unconventional face-centered cubic (fcc) and conventional hexagonal close-packed (hcp) crystalline phase supported on nitrogen-doped carbon matrix (fcc/hcp-Ru/NC) is successfully synthesized through a facile pyrolysis approach. Fascinatingly, the fcc/hcp-Ru/NC displayed excellent electrocatalytic HER performance under a universal pH range. To deliver a current density of 10 mA cm-2, the fcc/hcp-Ru/NC required overpotentials of 16.8, 23.8 and 22.3 mV in 1 M KOH, 0.5 M H2SO4 and 1 M phosphate buffered solution (PBS), respectively. Even to drive an industrial-level current density of 500 and 1000 mA cm-2, the corresponding overpotentials are 189.8 and 284 mV in alkaline, 202 and 287 mV in acidic media, respectively. Experimental and theoretical calculation result unveiled that the charge migration from fcc-Ru to hcp-Ru induced by work function discrepancy within fcc/hcp-Ru/NC regulate the d-band center of Ru sites, which facilitated the water adsorption and dissociation, thus boosting the electrocatalytic HER performance. The present work paves the way for construction of novel and efficient electrocatalysts for energy conversion and storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA