Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 626(7998): 319-326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326596

RESUMEN

Late Pleistocene ice-age climates are routinely characterized as having imposed moisture stress on low- to mid-latitude ecosystems1-5. This idea is largely based on fossil pollen evidence for widespread, low-biomass glacial vegetation, interpreted as indicating climatic dryness6. However, woody plant growth is inhibited under low atmospheric CO2 (refs. 7,8), so understanding glacial environments requires the development of new palaeoclimate indicators that are independent of vegetation9. Here we show that, contrary to expectations, during the past 350 kyr, peaks in southern Australian climatic moisture availability were largely confined to glacial periods, including the Last Glacial Maximum, whereas warm interglacials were relatively dry. By measuring the timing of speleothem growth in the Southern Hemisphere subtropics, which today has a predominantly negative annual moisture balance, we developed a record of climatic moisture availability that is independent of vegetation and extends through multiple glacial-interglacial cycles. Our results demonstrate that a cool-moist response is consistent across the austral subtropics and, in part, may result from reduced evaporation under cool glacial temperatures. Insofar as cold glacial environments in the Southern Hemisphere subtropics have been portrayed as uniformly arid3,10,11, our findings suggest that their characterization as evolutionary or physiological obstacles to movement and expansion of animal, plant and, potentially, human populations10 should be reconsidered.


Asunto(s)
Ecosistema , Humedad , Cubierta de Hielo , Animales , Humanos , Migración Animal , Australia , Frío , Clima Desértico , Historia Antigua , Plantas , Polen , Volatilización
2.
PLoS One ; 17(7): e0270104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857764

RESUMEN

Detailed, well-dated palaeoclimate and archaeological records are critical for understanding the impact of environmental change on human evolution. Ga-Mohana Hill, in the southern Kalahari, South Africa, preserves a Pleistocene archaeological sequence. Relict tufas at the site are evidence of past flowing streams, waterfalls, and shallow pools. Here, we use laser ablation screening to target material suitable for uranium-thorium dating. We obtained 33 ages covering the last 110 thousand years (ka) and identify five tufa formation episodes at 114-100 ka, 73-48 ka, 44-32 ka, 15-6 ka, and ~3 ka. Three tufa episodes are coincident with the archaeological units at Ga-Mohana Hill dating to ~105 ka, ~31 ka, and ~15 ka. Based on our data and the coincidence of dated layers from other local records, we argue that in the southern Kalahari, from ~240 ka to ~71 ka wet phases and human occupation are coupled, but by ~20 ka during the Last Glacial Maximum (LGM), they are decoupled.


Asunto(s)
Arqueología , Agua , Anciano de 80 o más Años , Botswana , Fósiles , Humanos , Ocupaciones , Torio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA