Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 11991-11999, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639465

RESUMEN

The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.


Asunto(s)
Imagen Óptica , Humanos , Endosomas/metabolismo , Nanofibras/química , Línea Celular , Animales
2.
J Am Chem Soc ; 146(11): 7222-7232, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38469853

RESUMEN

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.


Asunto(s)
Melaninas , Nanodiamantes , Rayos Ultravioleta , Radicales Libres
3.
Anal Chem ; 96(5): 1932-1940, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38241704

RESUMEN

Selective labeling of the protein of interest (POI) in genetically unmodified live cells is crucial for understanding protein functions and kinetics in their natural habitat. In particular, spatiotemporally controlled installation of the labels on a POI under light control without affecting their original activity is in high demand but is a tremendous challenge. Here, we describe a novel ligand-directed photoclick strategy for spatiotemporally controlled labeling of endogenous proteins in live cells. It was realized with a designer labeling reagent skillfully integrating the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand. Highly electrophilic ortho-naphthoquinone methide was photochemically released and underwent a proximity coupling reaction with nucleophilic amino acid residues on the POI in live cells. With fluorescein as a marker, this photoclick strategy enables time-resolved labeling of carbonic anhydrase subtypes localized either on the cell membrane or in the cytoplasm and a discriminable visualization of their metabolic kinetics. Given the versatility underlined by facilely tethering other functional entities (e.g., biotin, a peptide short chain) via acylation or (in cell) Huisgen cycloaddition, this affinity-driven photoclick chemistry opens up enormous opportunities for discovering dynamic functions and mechanistic interrogation of endogenous proteins in live cells.


Asunto(s)
Naftoles , Proteínas , Ligandos , Proteínas/química , Naftoles/química , Fluoresceína
4.
Biomacromolecules ; 25(5): 3063-3075, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652055

RESUMEN

Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable ß-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive ß-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.


Asunto(s)
Amiloide , Interacciones Hidrofóbicas e Hidrofílicas , Amiloide/química , Péptidos/química , Agregado de Proteínas , Humanos , Simulación de Dinámica Molecular , Nanofibras/química , Estructura Secundaria de Proteína
5.
Appl Microbiol Biotechnol ; 108(1): 284, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573322

RESUMEN

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.


Asunto(s)
Bioensayo , Oligonucleótidos , Control de Calidad , Temperatura
6.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198527

RESUMEN

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Péptidos , Amiloide/química , Antibacterianos/farmacología , Hemoglobinas
7.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542416

RESUMEN

Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool.


Asunto(s)
Candida , Candidiasis , Humanos , Estudios de Seguimiento , Candidiasis/diagnóstico , Candidiasis/tratamiento farmacológico , Candida glabrata , Antifúngicos/uso terapéutico
8.
Angew Chem Int Ed Engl ; 63(18): e202314143, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38179812

RESUMEN

Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Camptotecina/química , Distribución Tisular , Antineoplásicos/química , Micelas , Proteínas , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Liberación de Fármacos , Línea Celular Tumoral
9.
Bioconjug Chem ; 34(9): 1645-1652, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37665137

RESUMEN

Viral infections pose a significant threat to human health, and effective antiviral strategies are urgently needed. Antiviral peptides have emerged as a promising class of therapeutic agents due to their unique properties and mechanisms of action. While effective on their own, combining antiviral peptides may allow us to enhance their potency and to prevent viral resistance. Here, we developed an orthogonal chemical strategy to prepare a heterodimeric peptide conjugate assembled on a protein-based nanoplatform. Specifically, we combined the optimized version of two peptides inhibiting HIV-1 by distinct mechanisms. Virus-inhibitory peptide (VIRIP) is a 20 amino acid fragment of α1-antitrypsin that inhibits HIV-1 by targeting the gp41 fusion peptide. Endogenous peptide inhibitor of CXCR4 (EPI-X4) is a 16-residue fragment of human serum albumin that prevents HIV-1 entry by binding to the viral CXCR4 co-receptor. Optimized forms of both peptides are assembled on supramolecular nanoplatforms through the streptavidin-biotin interaction. We show that the construct consisting of the two different peptides (SAv-VIR-102C9-EPI-X4 JM#173-C) shows increased activity against CCR5- and CXCR4-tropic HIV-1 variants. Our results are a proof of concept that peptides with different modes of action can be assembled on nanoplatforms to enhance their antiviral activity.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Péptidos/farmacología , Albúmina Sérica Humana , Antivirales
10.
Acc Chem Res ; 55(20): 2998-3009, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36178462

RESUMEN

The polymerization of biomolecules is a central operation in biology that connects molecular signals with proliferative and information-rich events in cells. As molecules arrange precisely across 3-D space, they create new functional capabilities such as catalysis and transport highways and exhibit new phase separation phenomena that fuel nonequilibrium dynamics in cells. Hence, the observed polymer chemistry manifests itself as a molecular basis leading to cellular phenotypes, expressed as a multitude of hierarchical structures found in cell biology. Although many milestone discoveries had accompanied the rise of the synthetic polymer era, fundamental studies were realized within a closed, pristine environment and that their behavior in a complex multicomponent system remains challenging and thus unexplored. From this perspective, there is a rich trove of undiscovered knowledge that awaits the polymer science community that can revolutionize understanding in the interactive nanoscale world of the living cell.In this Account, we discuss the strategies that have enabled synthetic polymer chemistry to be conducted within the cells (membrane inclusive) and to establish monomer design principles that offer spatiotemporal control of the polymerization. As reaction considerations such as monomer concentration, polymer growth dynamics, and reactivities are intertwined with the subcellular environment and transport processes, we first provide a chemical narrative of each major cellular compartment. The conditions within each compartment will therefore set the boundaries on the type of polymer chemistry that can be conducted. Both covalent and supramolecular polymerization concepts are explored separately in the context of scaffold design, polymerization mechanism, and activation. To facilitate transport into a localized subcellular space, we show that monomers can be reversibly modified by targeting groups or stimulus-responsive motifs that react within the specific compartment. Upon polymerization, we discuss the characterization of the resultant polymeric structures and how these phase-separated structures would impact biological processes such as cell cycle, metabolism, and apoptosis. As we begin to integrate cellular biochemistry with in situ polymer science, we identify landmark challenges and technological hurdles that, when overcome, would lead to invaluable discoveries in macromolecular therapeutics and biology.


Asunto(s)
Polímeros , Catálisis , Sustancias Macromoleculares/química , Polimerizacion , Polímeros/química
11.
Chem Rev ; 121(18): 11030-11084, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-33739829

RESUMEN

DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.


Asunto(s)
Nanoestructuras , Polímeros , ADN/química , Micelas , Nanoestructuras/química , Nanotecnología , Polímeros/química
12.
Macromol Rapid Commun ; 44(16): e2200332, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689352

RESUMEN

Bioderived polymers are one of many current research areas that promise a sustainable future. Due to their unique properties, the bioderived polymer polydopamine has been in the spotlight over the last decades. Its ability to adhere to virtually any surface and its stability over a wide pH range as well as in several organic solvents make it a suitable candidate for various applications like coatings and biosensors. However, strong light absorption over a broad range of wavelengths and high quenching efficiency limit its uses. Therefore, new bioderived polymers with similar features to polydopamine but without fluorescence quenching properties are highly desirable. Herein, the electropolymerization of a bioderived analog of dopamine, 3-amino-l-tyrosine, is demonstrated. The resulting polymer, poly(amino-l-tyrosine), exhibits several characteristics complementary to or even exceeding those of polydopamine and its analog, polynorepinephrine, rendering poly(amino-l-tyrosine) attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectro-electrochemistry, and electrochemical quartz crystal microbalance measurements are applied to study the electrodeposition of this material, and the resulting films are compared to polydopamine and polynorepinephrine. Impedance spectroscopy reveals increased ion permeability of poly(amino-l-tyrosine) compared to polydopamine and polynorepinephrine. Moreover, the reduced fluorescence quenching of poly(amino-l-tyrosine) supports its use as coating for biosensors and organic semiconductors.


Asunto(s)
Técnicas Biosensibles , Polímeros , Polímeros/química , Tirosina , Dopamina/química , Tecnicas de Microbalanza del Cristal de Cuarzo
13.
Nano Lett ; 22(7): 2881-2888, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35289621

RESUMEN

Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.


Asunto(s)
Nanodiamantes , Termometría , Diagnóstico por Imagen , Portadores de Fármacos , Nanodiamantes/química , Silicio
14.
Nano Lett ; 22(2): 578-585, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34904831

RESUMEN

The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 µs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.


Asunto(s)
Nanoestructuras , Polímeros , Indoles , Nanotecnología , Polímeros/química
15.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902270

RESUMEN

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Asunto(s)
Hidrogeles , Infección de Heridas , Humanos , Pseudomonas aeruginosa , Péptidos Antimicrobianos , Infección de Heridas/microbiología , Vendajes , Antibacterianos
16.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372935

RESUMEN

Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris.


Asunto(s)
Candida albicans , Fluconazol , Fluconazol/farmacología , Candida parapsilosis , Antifúngicos/farmacología , Candida , Biopelículas , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
17.
J Am Chem Soc ; 144(28): 12642-12651, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35737900

RESUMEN

Hydrogen peroxide (H2O2) plays an important role in various signal transduction pathways and regulates important cellular processes. However, monitoring and quantitatively assessing the distribution of H2O2 molecules inside living cells requires a nanoscale sensor with molecular-level sensitivity. Herein, we show the first demonstration of sub-10 nm-sized fluorescent nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside the NDs are employed to quantify the aforementioned radicals. We believe that our method of combining the peroxidase-mimicking activities of the NDs with their intrinsic quantum sensor showcases their application as self-reporting H2O2 sensors with molecular-level sensitivity and nanoscale spatial resolution. Given the robustness and the specificity of the sensor, our results promise a new platform for elucidating the role of H2O2 at the cellular level.


Asunto(s)
Nanodiamantes , Peróxido de Hidrógeno , Nitrógeno
18.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35729777

RESUMEN

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Asunto(s)
Nanoestructuras , Platino (Metal) , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Homeostasis , Peróxido de Hidrógeno , Nanoestructuras/química
19.
Macromol Rapid Commun ; 43(12): e2100413, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34469614

RESUMEN

Responsive biomaterials, tunable from the molecular to the macroscopic scale, are attractive for various applications in nanotechnology. Herein, a long polypeptide chain derived from the abundant serum protein human serum albumin is cross-linked by dynamic-coordinative iron(III)/catechol bonds. By tuning the binding stoichiometry and the pH, reversible intramolecular folding into polypeptide nanoparticles with controllable sizes is achieved. Moreover, upon varying the stoichiometry, intermolecular cross-links become predominant yielding smart and tunable macroscopic protein hydrogels. By adjusting the intra- and intermolecular interactions, biocompatible and biodegradable materials are formed with varying morphologies and dimensions covering several lengths scales featuring rapid gelation without toxic reagents, fast and autonomous self-healing, tunable mechanical properties, and high adaptability to local environmental conditions. Such material characteristics can be particularly attractive for tissue engineering approaches to recreate soft tissues matrices with highly customizable features in a fast and simple fashion.


Asunto(s)
Hidrogeles , Nanopartículas , Materiales Biocompatibles , Catecoles , Humanos , Hidrogeles/química , Hierro , Péptidos , Polímeros
20.
Nano Lett ; 21(9): 3780-3788, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33881327

RESUMEN

Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.


Asunto(s)
Nanodiamantes , Calefacción , Calor , Medicina de Precisión , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA