Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 65(4): 1181-1195, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27981604

RESUMEN

Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION: Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).


Asunto(s)
Dieta Occidental , Epítopos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Hipercolesterolemia/patología , Malondialdehído/metabolismo , Análisis de Varianza , Animales , Biopsia con Aguja , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epítopos/inmunología , Hígado Graso/inmunología , Femenino , Hipercolesterolemia/fisiopatología , Inmunidad Innata , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microbiota , Estrés Oxidativo , Distribución Aleatoria
2.
Nature ; 478(7367): 76-81, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979047

RESUMEN

Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.


Asunto(s)
Factor H de Complemento/metabolismo , Epítopos/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo , Animales , Apoptosis , Sitios de Unión/genética , Factor H de Complemento/genética , Factor H de Complemento/inmunología , Proteínas Inactivadoras de Complemento/genética , Proteínas Inactivadoras de Complemento/inmunología , Proteínas Inactivadoras de Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Peroxidación de Lípido , Macrófagos Peritoneales/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Malondialdehído/antagonistas & inhibidores , Malondialdehído/química , Malondialdehído/inmunología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Necrosis , Unión Proteica/genética , Estructura Terciaria de Proteína , Retina/metabolismo
3.
Biochim Biophys Acta ; 1818(10): 2465-75, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22305963

RESUMEN

Lipid peroxidation occurs in the context of many physiological processes but is greatly increased in various pathological situations. A consequence of phospholipid peroxidation is the generation of oxidation-specific epitopes, such as phosphocholine of oxidized phospholipids and malondialdehyde, which form neo-self determinants on dying cells and oxidized low-density lipoproteins. In this review we discuss evidence demonstrating that pattern recognition receptors of the innate immune system recognize oxidation-specific epitopes as endogenous damage-associated molecular patterns, allowing the host to identify dangerous biological waste. Oxidation-specific epitopes are important targets of both cellular and soluble pattern recognition receptors, including toll-like and scavenger receptors, C-reactive protein, complement factor H, and innate natural IgM antibodies. This recognition allows the innate immune system to mediate important physiological house keeping functions, for example by promoting the removal of dying cells and oxidized molecules. Once this system is malfunctional or overwhelmed the development of diseases, such as atherosclerosis and age-related macular degeneration is favored. Understanding the molecular components and mechanisms involved in this process, will help the identification of individuals with increased risk of developing chronic inflammation, and indicate novel points for therapeutic intervention. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.


Asunto(s)
Inmunidad Innata/inmunología , Peroxidación de Lípido/inmunología , Fosfolípidos/inmunología , Animales , Epítopos/inmunología , Humanos , Oxidación-Reducción , Receptores de Reconocimiento de Patrones/inmunología
4.
PLoS Biol ; 5(6): e155, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17550305

RESUMEN

Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/fisiología , Holoenzimas/metabolismo , Metilación , Modelos Biológicos , Fosfoproteínas Fosfatasas/biosíntesis , Proteína Fosfatasa 2 , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA