Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 16: 910, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26547235

RESUMEN

BACKGROUND: We describe the pioneering experience of a Spanish family pursuing the goal of understanding their own personal genetic data to the fullest possible extent using Direct to Consumer (DTC) tests. With full informed consent from the Corpas family, all genotype, exome and metagenome data from members of this family, are publicly available under a public domain Creative Commons 0 (CC0) license waiver. All scientists or companies analysing these data ("the Corpasome") were invited to return results to the family. METHODS: We released 5 genotypes, 4 exomes, 1 metagenome from the Corpas family via a blog and figshare under a public domain license, inviting scientists to join the crowdsourcing efforts to analyse the genomes in return for coauthorship or acknowldgement in derived papers. Resulting analysis data were compiled via social media and direct email. RESULTS: Here we present the results of our investigations, combining the crowdsourced contributions and our own efforts. Four companies offering annotations for genomic variants were applied to four family exomes: BIOBASE, Ingenuity, Diploid, and GeneTalk. Starting from a common VCF file and after selecting for significant results from company reports, we find no overlap among described annotations. We additionally report on a gut microbiome analysis of a member of the Corpas family. CONCLUSIONS: This study presents an analysis of a diverse set of tools and methods offered by four DTC companies. The striking discordance of the results mirrors previous findings with respect to DTC analysis of SNP chip data, and highlights the difficulties of using DTC data for preventive medical care. To our knowledge, the data and analysis results from our crowdsourced study represent the most comprehensive exome and analysis for a family quartet using solely DTC data generation to date.


Asunto(s)
Colaboración de las Masas , Familia , Pruebas Genéticas , Genómica , Colaboración de las Masas/métodos , Exoma , Femenino , Frecuencia de los Genes , Pruebas Genéticas/métodos , Genómica/métodos , Genotipo , Humanos , Masculino , Metagenoma , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Carácter Cuantitativo Heredable , España
2.
Brief Bioinform ; 14(4): 469-90, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22851511

RESUMEN

Genomic data integration is a key goal to be achieved towards large-scale genomic data analysis. This process is very challenging due to the diverse sources of information resulting from genomics experiments. In this work, we review methods designed to combine genomic data recorded from microarray gene expression (MAGE) experiments. It has been acknowledged that the main source of variation between different MAGE datasets is due to the so-called 'batch effects'. The methods reviewed here perform data integration by removing (or more precisely attempting to remove) the unwanted variation associated with batch effects. They are presented in a unified framework together with a wide range of evaluation tools, which are mandatory in assessing the efficiency and the quality of the data integration process. We provide a systematic description of the MAGE data integration methodology together with some basic recommendation to help the users in choosing the appropriate tools to integrate MAGE data for large-scale analysis; and also how to evaluate them from different perspectives in order to quantify their efficiency. All genomic data used in this study for illustration purposes were retrieved from InSilicoDB http://insilico.ulb.ac.be.


Asunto(s)
Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma , Simulación por Computador , Bases de Datos Genéticas , Expresión Génica , Variación Genética , Genoma
3.
BMC Bioinformatics ; 13: 335, 2012 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-23259851

RESUMEN

BACKGROUND: With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck. RESULTS: We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the inSilicoMerging package a set of five visual and six quantitative validation measures are available as well. CONCLUSIONS: By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [https://insilicodb.org/app/].


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Programas Informáticos , Acceso a la Información , Humanos
4.
Bioinformatics ; 27(22): 3204-5, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21937664

RESUMEN

Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb R/Bioconductor package is a command-line front-end to the InSilico DB, a web-based database currently containing 86 104 expert-curated human Affymetrix expression profiles compiled from 1937 GEO repository series. The use of this package builds on the Bioconductor project's focus on reproducibility by enabling a clear workflow in which not only analysis, but also the retrieval of verified data is supported.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Bases de Datos Genéticas , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
5.
Genome Biol ; 13(11): R104, 2012 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-23158523

RESUMEN

Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platform is a powerful collaborative environment, with advanced capabilities for biocuration, dataset sharing, and dataset subsetting and combination. InSilico DB is available from https://insilicodb.org.


Asunto(s)
Genómica/métodos , Neoplasias/genética , Programas Informáticos , Bases de Datos Genéticas , Genoma , Humanos , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA