Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 42(7): e111450, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861806

RESUMEN

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Asunto(s)
Infecciones Bacterianas , Sinapsis Inmunológicas , Ratones , Animales , Canales Iónicos/metabolismo , Células Asesinas Naturales , Infecciones Bacterianas/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos
2.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938188

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

3.
Pharmacology ; 105(1-2): 19-27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31645049

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a common and lethal cancer of the central nervous system. This cancer is difficult to treat because most anticancer therapeutics do not readily penetrate into the brain due to the tight control at the cerebrovascular barrier. Numerous studies have suggested that dopamine D2 receptor (D2R) antagonists, such as first generation antipsychotics, may have anticancer efficacy in vivo and in vitro. The role of the D2R itself in the anticancer effects is unclear, but there is evidence suggesting that D2R activation promotes stem-like and spheroid forming behaviors in GBM. OBJECTIVES: We aimed to observe the role of the dopamine D2R and its modulators (at selective concentrations) in spheroid formation and stemness of GBM cell line, U87MG, to clarify the validity of the D2R as a therapeutic target for cancer therapy. METHODS: Spheroid formation assays and Western blotting of the glioblastoma cell line, U87MG, were used to observe responses to treatment with the D2R agonists sumanirole, ropinirole, and 4-propyl-9-hydroxynaphthoxazine (PHNO); and the D2R antagonists thioridazine, pimozide, haloperidol, and remoxipride. Extreme limiting dilution analysis was done to determine the impact of sumanirole and remoxipride treatment on sphere-forming cell frequency. Proliferation was also measured by crystal violet staining. Stable lentiviral transduction of DRD2 or shDRD2 was used to validate the role of the D2R in assay behaviors. RESULTS: D2R antagonists thioridazine, pimozide, haloperidol, and remoxipride decrease spheroid formation behaviors at a selective 100 nmol/L concentration, while D2R agonists PHNO, sumanirole, and ropinirole increase the formation of spheroids. Similarly, 100 nmol/L remoxipride decreased sphere-forming cell frequency. These results were recapitulated with genetic overexpression and knockdown of the D2R, and combination experiments indicate that the D2R is required for the effects of the pharmacological modulators. Furthermore, spheroid proliferation and invasive capacity increased under treatment with 100 nmol/L sumanirole and decreased under treatment with 100 nmol/L thioridazine. Expression levels of the stemness markers Nestin and Sox2, as well as those of differentiation marker glial fibrillary acidic protein, were not altered by 100 nmol/L thioridazine or sumanirole for 72 h or continuous treatment with these compounds for 7 days during a spheroid formation assay. CONCLUSIONS: Signaling activity of the dopamine D2R may be involved in the spheroid formation phenotype in the context of the U87MG cell line. However, this modulation may not be due to alterations in stemness marker expression, but due to other factors that may contribute to spheroid formation, such as cell-cell adhesion or EGFR signaling.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores de Dopamina D2/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Fenotipo , ARN Interferente Pequeño/genética , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética , Esferoides Celulares
4.
Prostate ; 79(1): 21-30, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30106164

RESUMEN

BACKGROUND: Following androgen deprivation for the treatment of advanced adenocarcinoma of the prostate, tumors can progress to neuroendocrine prostate cancer (NEPC). This transdifferentiation process is poorly understood, but trafficking of transcriptional factors and/or cytoskeletal rearrangements may be involved. We observed the role of geranylgeranylation in this process by treatment with digeranyl bisphosphonate (DGBP), a selective inhibitor of geranylgeranyl pyrophosphate synthase which blocks the prenylation of small GTPases such as Rho and Rab family proteins, including Cdc42 and Rac1. METHODS: We examined the therapeutic potential of DGBP in LNCaP, C4-2B4, and 22Rv1 cell culture models. Cell morphology and protein expression were quantified to observe the development of the neuroendocrine phenotype in androgen-deprivation and abiraterone-treated LNCaP models of NEPC development. Luciferase reporter assays were utilized to examine AR activity, and immunofluorescence visualized the localization of AR within the cell. RESULTS: Essential genes in the isoprenoid pathway, such as HMGCR, MVK, GGPS1, and GGT1, were highly expressed in a subset of castration resistant prostate cancers reported by Beltran et al. Under treatment with DGBP, nuclear localization of AR decreased in LNCaP, 22Rv1, and C4-2B4 cell lines, luciferase reporter activity was reduced in LNCaP and 22Rv1, and AR target gene transcription also decreased in LNCaP. Conversely, nuclear localization of AR was enhanced by the addition of GGOH. Finally, induction of the NEPC structural and molecular phenotype via androgen deprivation in LNCaP cells was inhibited by DGBP in a GGOH-dependent manner. CONCLUSIONS: DGBP is a novel compound with the potential to reduce AR transcriptional activity and inhibit PCa progression to NEPC phenotype. These results suggest that DGBP may be used to block cell growth and metastasis in both hormone therapy sensitive and resistant paradigms.


Asunto(s)
Núcleo Celular/metabolismo , Difosfonatos/farmacología , Células Neuroendocrinas/metabolismo , Fosfatos de Poliisoprenilo/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Terpenos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Difosfonatos/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Células Neuroendocrinas/efectos de los fármacos , Fosfatos de Poliisoprenilo/biosíntesis , Neoplasias de la Próstata/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Terpenos/uso terapéutico
5.
J Pharmacol Exp Ther ; 370(1): 111-126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31000578

RESUMEN

The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ligandos , Terapia Molecular Dirigida , Neoplasias/patología , Receptores de Dopamina D2/agonistas , Transducción de Señal/efectos de los fármacos
6.
Cancer Res Commun ; 3(8): 1594-1606, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37599786

RESUMEN

Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance: Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.


Asunto(s)
Endorribonucleasas , Leucemia Mieloide Aguda , Adulto , Humanos , Especies Reactivas de Oxígeno , Proteínas Serina-Treonina Quinasas , Leucemia Mieloide Aguda/tratamiento farmacológico , Estrógenos , Estrés del Retículo Endoplásmico
7.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163088

RESUMEN

The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.

8.
Front Cell Dev Biol ; 11: 1082213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363724

RESUMEN

Introduction: The mitochondrial uniporter (MCU) Ca2+ ion channel represents the primary means for Ca2+ uptake by mitochondria. Mitochondrial matrix Ca2+ plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG. Nevertheless, the roles of MCU-mediated Ca2+ influx in cancer cells remain unclear, in part because of a lack of genetic models. Methods: MCU was genetically deleted in transformed murine fibroblasts for study in vitro and in vivo. Tumor formation and growth were studied in murine xenograft models. Proliferation, cell invasion, spheroid formation and cell cycle progression were measured in vitro. The effects of MCU deletion on survival and cell-death were determined by probing for live/death markers. Mitochondrial bioenergetics were studied by measuring mitochondrial matrix Ca2+ concentration, membrane potential, global dehydrogenase activity, respiration, ROS production and inactivating-phosphorylation of pyruvate dehydrogenase. The effects of MCU rescue on metabolism were examined by tracing of glucose and glutamine utilization for fueling of mitochondrial respiration. Results: Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced MCU-mediated Ca2+ uptake, altered mitochondrial matrix Ca2+ concentration responses to agonist stimulation, suppression of inactivating-phosphorylation of pyruvate dehydrogenase and a modest increase of mitochondrial respiration. Genetic MCU deletion inhibited growth of HEK293T cells and transformed fibroblasts in mouse xenograft models, associated with reduced proliferation and delayed cell-cycle progression. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro, both predictors of metastatic potential. Surprisingly, mitochondrial matrix [Ca2+], membrane potential, global dehydrogenase activity, respiration and ROS production were unaffected. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca2+ signals. Conclusion: Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on MCU for cell metabolism and Ca2+ dynamics necessary for cell-cycle progression and cell proliferation.

9.
Viruses ; 14(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36146655

RESUMEN

Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Animales , Carcinoma de Células de Merkel/patología , Fibroblastos/metabolismo , Guanosina/análogos & derivados , Humanos , Poliomavirus de Células de Merkel/genética , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Estilbenos , Tionucleósidos
10.
Pharmacol Res Perspect ; 9(3): e00689, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003586

RESUMEN

Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.


Asunto(s)
Antipsicóticos/farmacología , Señalización del Calcio/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Antagonistas de los Receptores de Dopamina D2/farmacología , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Agonistas de Dopamina/farmacología , Glioblastoma/metabolismo , Humanos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética
11.
Lipids ; 53(8): 767-784, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30334267

RESUMEN

The schweinfurthin family of compounds displays exciting potent and differential cytotoxicity against human cancer cell lines. Currently, the effect of schweinfurthins on tumor development and progression is being explored in animal models of cancer with promising results. The first schweinfurthin family member, vedelianin, was isolated in 1992, followed by other schweinfurthins in 1998. This opened up the door for the synthesis of additional analogs. At present, the focus of research lies on delineating the mechanism of schweinfurthin action and identifying the nature of sensitivity. It appears that many of the intracellular effects of schweinfurthins are due to, or impacted by, the effect of schweinfurthins on lipid metabolism, synthesis, and homeostasis. These effects include impaired trafficking from the trans-golgi network, disruption of lipid rafts, changes in oxysterol-binding protein activity, and interference with the isoprenoid biosynthesis pathway (IBP). Cancer cells are known to rely heavily on fatty acid, lipid, and sterol synthesis for growth and proliferation. Therefore, compounds that target these needs, such as schweinfurthins, display promise as novel therapeutics. This timely review will take an in-depth look at the history of schweinfurthins, their synthesis, where the research presently stands, and the questions that remain.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/química , Neoplasias/tratamiento farmacológico , Estilbenos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Estructura Molecular , Neoplasias/patología , Estilbenos/síntesis química , Estilbenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA