Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Respir Cell Mol Biol ; 66(5): 564-576, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202558

RESUMEN

Epithelial polyploidization after injury is a conserved phenomenon recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces alveolar type 2 cell (AT2) hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 transdifferentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response using the small molecule ISRIB. These data suggest that AT2 hypertrophic growth and polyploidization may be a feature of alveolar epithelial injury. Because AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon reinjury, which may benefit from targeting the integrated stress response.


Asunto(s)
Lesión Pulmonar , Células Epiteliales Alveolares/metabolismo , Diferenciación Celular , Humanos , Hipertrofia/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Poliploidía
2.
J Immunol ; 202(2): 484-493, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530483

RESUMEN

Muscle dysfunction is common in patients with adult respiratory distress syndrome and is associated with morbidity that can persist for years after discharge. In a mouse model of severe influenza A pneumonia, we found the proinflammatory cytokine IL-6 was necessary for the development of muscle dysfunction. Treatment with a Food and Drug Administration-approved Ab antagonist to the IL-6R (tocilizumab) attenuated the severity of influenza A-induced muscle dysfunction. In cultured myotubes, IL-6 promoted muscle degradation via JAK/STAT, FOXO3a, and atrogin-1 upregulation. Consistent with these findings, atrogin-1+/- and atrogin-1-/- mice had attenuated muscle dysfunction following influenza infection. Our data suggest that inflammatory endocrine signals originating from the injured lung activate signaling pathways in the muscle that induce dysfunction. Inhibiting these pathways may limit morbidity in patients with influenza A pneumonia and adult respiratory distress syndrome.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-6/metabolismo , Pulmón/fisiología , Proteínas Musculares/metabolismo , Músculos/patología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Síndrome Debilitante/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Humanos , Interleucina-6/genética , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
3.
Am J Respir Cell Mol Biol ; 63(2): 244-254, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275835

RESUMEN

Delayed lung repair leads to alveolopleural fistulae, which are a major cause of morbidity after lung resections. We have reported that intrapleural hypercapnia is associated with delayed lung repair after lung resection. Here, we provide new evidence that hypercapnia delays wound closure of both large airway and alveolar epithelial cell monolayers because of inhibition of epithelial cell migration. Cell migration and airway epithelial wound closure were dependent on Rac1-GTPase activation, which was suppressed by hypercapnia directly through the upregulation of AMP kinase and indirectly through inhibition of injury-induced NF-κB-mediated CXCL12 (pleural CXC motif chemokine 12) release, respectively. Both these pathways were independently suppressed, because dominant negative AMP kinase rescued the effects of hypercapnia on Rac1-GTPase in uninjured resting cells, whereas proteasomal inhibition reversed the NF-κB-mediated CXCL12 release during injury. Constitutive overexpression of Rac1-GTPase rescued the effects of hypercapnia on both pathways as well as on wound healing. Similarly, exogenous recombinant CXCL12 reversed the effects of hypercapnia through Rac1-GTPase activation by its receptor, CXCR4. Moreover, CXCL12 transgenic murine recipients of orthotopic tracheal transplantation were protected from hypercapnia-induced inhibition of tracheal epithelial cell migration and wound repair. In patients undergoing lobectomy, we found inverse correlation between intrapleural carbon dioxide and pleural CXCL12 levels as well as between CXCL12 levels and alveolopleural leak. Accordingly, we provide first evidence that high carbon dioxide levels impair lung repair by inhibiting epithelial cell migration through two distinct pathways, which can be restored by recombinant CXCL12.


Asunto(s)
Dióxido de Carbono/efectos adversos , Lesión Pulmonar/fisiopatología , Pulmón/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Femenino , Humanos , Hipercapnia/metabolismo , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , FN-kappa B/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 114(47): E10178-E10186, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109255

RESUMEN

Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/patología , Lesión Pulmonar/patología , Proteína Quinasa C/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células A549 , Animales , Apoptosis , Células COS , Proteínas Portadoras/genética , Hipoxia de la Célula , Membrana Celular/metabolismo , Chlorocebus aethiops , Regulación hacia Abajo , Endocitosis , Células Epiteliales/patología , Humanos , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lesión Pulmonar/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Mutación , Fosforilación , Cultivo Primario de Células , Proteolisis , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1094-L1106, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892074

RESUMEN

Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.


Asunto(s)
Glicósidos Cardíacos/farmacología , Inhibidores Enzimáticos/farmacología , Gripe Humana/tratamiento farmacológico , Biosíntesis de Proteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Replicación Viral/fisiología , Células A549 , Células Epiteliales Alveolares/virología , Animales , Antivirales/farmacología , Línea Celular Tumoral , Perros , Femenino , Humanos , Virus de la Influenza A , Pulmón/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ouabaína/farmacología , Potasio/metabolismo
6.
J Biol Chem ; 291(22): 11800-8, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27044749

RESUMEN

Molecular oxygen and carbon dioxide are the primary gaseous substrate and product of oxidative metabolism, respectively. Hypoxia (low oxygen) and hypercapnia (high carbon dioxide) are co-incidental features of the tissue microenvironment in a range of pathophysiologic states, including acute and chronic respiratory diseases. The hypoxia-inducible factor (HIF) is the master regulator of the transcriptional response to hypoxia; however, little is known about the impact of hypercapnia on gene transcription. Because of the relationship between hypoxia and hypercapnia, we investigated the effect of hypercapnia on the HIF pathway. Hypercapnia suppressed HIF-α protein stability and HIF target gene expression both in mice and cultured cells in a manner that was at least in part independent of the canonical O2-dependent HIF degradation pathway. The suppressive effects of hypercapnia on HIF-α protein stability could be mimicked by reducing intracellular pH at a constant level of partial pressure of CO2 Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase that blocks lysosomal degradation, prevented the hypercapnic suppression of HIF-α protein. Based on these results, we hypothesize that hypercapnia counter-regulates activation of the HIF pathway by reducing intracellular pH and promoting lysosomal degradation of HIF-α subunits. Therefore, hypercapnia may play a key role in the pathophysiology of diseases where HIF is implicated.


Asunto(s)
Dióxido de Carbono/sangre , Hipercapnia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Oxígeno/metabolismo , Animales , Western Blotting , Células Cultivadas , Femenino , Células HCT116 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Biol Chem ; 290(14): 9183-94, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691571

RESUMEN

Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.


Asunto(s)
Adenilato Quinasa/metabolismo , Dióxido de Carbono/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Proteína Forkhead Box O3 , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Motivos Tripartitos , Regulación hacia Arriba
8.
Am J Respir Cell Mol Biol ; 49(5): 821-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23777386

RESUMEN

Hypercapnia, an elevation of the level of carbon dioxide (CO2) in blood and tissues, is a marker of poor prognosis in chronic obstructive pulmonary disease and other pulmonary disorders. We previously reported that hypercapnia inhibits the expression of TNF and IL-6 and phagocytosis in macrophages in vitro. In the present study, we determined the effects of normoxic hypercapnia (10% CO2, 21% O2, and 69% N2) on outcomes of Pseudomonas aeruginosa pneumonia in BALB/c mice and on pulmonary neutrophil function. We found that the mortality of P. aeruginosa pneumonia was increased in 10% CO2-exposed compared with air-exposed mice. Hypercapnia increased pneumonia mortality similarly in mice with acute and chronic respiratory acidosis, indicating an effect unrelated to the degree of acidosis. Exposure to 10% CO2 increased the burden of P. aeruginosa in the lungs, spleen, and liver, but did not alter lung injury attributable to pneumonia. Hypercapnia did not reduce pulmonary neutrophil recruitment during infection, but alveolar neutrophils from 10% CO2-exposed mice phagocytosed fewer bacteria and produced less H2O2 than neutrophils from air-exposed mice. Secretion of IL-6 and TNF in the lungs of 10% CO2-exposed mice was decreased 7 hours, but not 15 hours, after the onset of pneumonia, indicating that hypercapnia inhibited the early cytokine response to infection. The increase in pneumonia mortality caused by elevated CO2 was reversible when hypercapnic mice were returned to breathing air before or immediately after infection. These results suggest that hypercapnia may increase the susceptibility to and/or worsen the outcome of lung infections in patients with severe lung disease.


Asunto(s)
Hipercapnia/complicaciones , Pulmón/inmunología , Neutrófilos/inmunología , Neumonía Bacteriana/complicaciones , Pseudomonas aeruginosa/patogenicidad , Acidosis Respiratoria/inmunología , Acidosis Respiratoria/microbiología , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Femenino , Células HL-60 , Humanos , Hipercapnia/inmunología , Hipercapnia/patología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/microbiología , Fagocitosis , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
9.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36626234

RESUMEN

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Asunto(s)
Hipercapnia , Vía de Señalización Wnt , Ratones , beta Catenina/metabolismo , Proliferación Celular , COVID-19/complicaciones , Hipercapnia/metabolismo , Animales
10.
J Clin Invest ; 118(2): 752-62, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18188452

RESUMEN

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


Asunto(s)
Dióxido de Carbono/metabolismo , Endocitosis , Hipercapnia/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas Quinasas Activadas por AMP , Agonistas Adrenérgicos beta/farmacología , Animales , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quelantes/farmacología , AMP Cíclico/farmacología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Líquido Extracelular/metabolismo , Humanos , Isoproterenol/farmacología , Proteína Quinasa C/metabolismo , Alveolos Pulmonares/enzimología , Ratas , Ratas Sprague-Dawley , Mucosa Respiratoria/enzimología
11.
J Cell Sci ; 122(Pt 21): 3915-22, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19808891

RESUMEN

Stimulation of Na(+)/K(+)-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na(+)/K(+)-ATPase recruitment to the plasma membrane by increasing the average speed of Na(+)/K(+)-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na(+)/K(+)-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na(+)/K(+)-ATPase-containing vesicles, as well as the Na(+)/K(+)-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na(+)/K(+)-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na(+)/K(+)-ATPase to the plasma membrane and thus increased activity.


Asunto(s)
Vesículas Citoplasmáticas/enzimología , Células Epiteliales/enzimología , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Alveolos Pulmonares/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Línea Celular , Membrana Celular/enzimología , Membrana Celular/genética , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Vesículas Citoplasmáticas/genética , Vesículas Citoplasmáticas/metabolismo , Células Epiteliales/metabolismo , Humanos , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética
12.
Biochem Biophys Res Commun ; 409(1): 28-33, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21549091

RESUMEN

Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na(+), K(+)-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to ß-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na(+), K(+)-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na(+), K(+)-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na(+), K(+)-ATPase activity and the incorporation of Na(+), K(+)-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Alveolos Pulmonares/enzimología , Mucosa Respiratoria/enzimología , Sodio/metabolismo , Animales , Broncodilatadores/farmacología , Línea Celular , Humanos , Transporte Iónico/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Proteínas Serina-Treonina Quinasas/genética , Alveolos Pulmonares/efectos de los fármacos , Ratas , Mucosa Respiratoria/efectos de los fármacos
13.
Front Physiol ; 11: 598122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329047

RESUMEN

Carbon dioxide (CO2) is produced in eukaryotic cells primarily during aerobic respiration, resulting in higher CO2 levels in mammalian tissues than those in the atmosphere. CO2 like other gaseous molecules such as oxygen and nitric oxide, is sensed by cells and contributes to cellular and organismal physiology. In humans, elevation of CO2 levels in tissues and the bloodstream (hypercapnia) occurs during impaired alveolar gas exchange in patients with severe acute and chronic lung diseases. Advances in understanding of the biology of high CO2 effects reveal that the changes in CO2 levels are sensed in cells resulting in specific tissue responses. There is accumulating evidence on the transcriptional response to elevated CO2 levels that alters gene expression and activates signaling pathways with consequences for cellular and tissue functions. The nature of hypercapnia-responsive transcriptional regulation is an emerging area of research, as the responses to hypercapnia in different cell types, tissues, and species are not fully understood. Here, we review the current understanding of hypercapnia effects on gene transcription and consequent cellular and tissue functions.

14.
Front Physiol ; 11: 630910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551852

RESUMEN

Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.

15.
Aging Cell ; 19(9): e13180, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32720752

RESUMEN

Skeletal muscle dysfunction in survivors of pneumonia disproportionately affects older individuals in whom it causes substantial morbidity. We found that skeletal muscle recovery was impaired in old compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II expression, followed by a proliferation of muscle satellite cells. These findings were absent in old mice and in mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from old compared with young mice showed downregulation of pathways associated with phagocytosis and proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle macrophages from old mice failed to downregulate MHCII expression during recovery from influenza A virus-induced pneumonia and showed impaired phagocytic function in vitro. Like old animals, mice deficient in the phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation, or satellite cell proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in old mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Virus de la Influenza A/patogenicidad , Macrófagos/metabolismo , Músculo Esquelético/fisiopatología , Fagocitosis/fisiología , Neumonía/patología , Animales , Ratones
16.
Sci Rep ; 9(1): 18251, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796806

RESUMEN

Carbon dioxide (CO2) is sensed by cells and can trigger signals to modify gene expression in different tissues leading to changes in organismal functions. Despite accumulating evidence that several pathways in various organisms are responsive to CO2 elevation (hypercapnia), it has yet to be elucidated how hypercapnia activates genes and signaling pathways, or whether they interact, are integrated, or are conserved across species. Here, we performed a large-scale transcriptomic study to explore the interaction/integration/conservation of hypercapnia-induced genomic responses in mammals (mice and humans) as well as invertebrates (Caenorhabditis elegans and Drosophila melanogaster). We found that hypercapnia activated genes that regulate Wnt signaling in mouse lungs and skeletal muscles in vivo and in several cell lines of different tissue origin. Hypercapnia-responsive Wnt pathway homologues were similarly observed in secondary analysis of available transcriptomic datasets of hypercapnia in a human bronchial cell line, flies and nematodes. Our data suggest the evolutionarily conserved role of high CO2 in regulating Wnt pathway genes.


Asunto(s)
Caenorhabditis elegans/metabolismo , Dióxido de Carbono/farmacología , Drosophila melanogaster/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Animales , Bronquios/citología , Bronquios/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Línea Celular , Drosophila melanogaster/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Hipercapnia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares
17.
Am J Respir Cell Mol Biol ; 38(1): 32-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17690328

RESUMEN

Carbonic anhydrase II (CAII) plays an important role in carbon dioxide metabolism and intracellular pH regulation. In this study, we provide evidence that CAII is expressed in both type I (AECI) and type II (AECII) alveolar epithelial cells by RT-PCR and Western blotting in freshly isolated rat cells. These results were further confirmed by double immunostaining with CAII antibodies and AECI- or AECII-specific markers in freshly isolated alveolar epithelial cells and rat lung tissues. Inhibition of CAII by acetazolamide or methazolamide delayed the decrease in the intracellular pH observed during hypercapnia in cultured AECI, AECII, and AECI-like cells. In an isolated-perfused rat lung model, alveolar fluid reabsorption significantly decreased during high CO(2) exposure, which was not prevented by carbonic anhydrase inhibition. Thus, we provide evidence that CAII is expressed in rat alveolar epithelial cells and does not regulate lung alveolar fluid reabsorption during hypercapnia.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/biosíntesis , Células Epiteliales/enzimología , Hipercapnia/enzimología , Alveolos Pulmonares/enzimología , Acetazolamida/farmacología , Animales , Dióxido de Carbono/farmacología , Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/patología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Hipercapnia/patología , Masculino , Metazolamida/farmacología , Técnicas de Cultivo de Órganos , Perfusión , Alveolos Pulmonares/patología , Ratas , Ratas Sprague-Dawley
18.
Cell Signal ; 19(9): 1893-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17532187

RESUMEN

As a cellular adaptative response, hypoxia decreases Na,K-ATPase activity by triggering the endocytosis of its alpha(1) subunit in alveolar epithelial cells. Here, we present evidence that the ubiquitin conjugating system is important in the Na,K-ATPase endocytosis during hypoxia and that ubiquitination of Na,K-ATPase alpha(1) subunit occurs at the basolateral membrane. Endocytosis and ubiquitination were prevented when the Ser 18 in the PKC phosphorylation motif of the Na,K-ATPase alpha(1) subunit was mutated to an alanine, suggesting that phosphorylation at Ser-18 is required for ubiquitination. Mutation of the four lysines surrounding Ser 18 to arginine prevented Na,K-ATPase ubiquitination and endocytosis during hypoxia; however, only one of them was sufficient to restore hypoxia-induced endocytosis. We provide evidence that ubiquitination plays an important role in cellular adaptation to hypoxia by regulating Na,K-ATPase alpha(1)-subunit endocytosis.


Asunto(s)
Endocitosis , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Hipoxia de la Célula , Línea Celular Tumoral , Membrana Celular/enzimología , Cricetinae , Cricetulus , Humanos , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Fosfoserina/metabolismo , Subunidades de Proteína/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/química
19.
Sci Transl Med ; 10(457)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185650

RESUMEN

The elevation of carbon dioxide (CO2) in tissues and the bloodstream (hypercapnia) occurs in patients with severe lung diseases, including chronic obstructive pulmonary disease (COPD). Whereas hypercapnia has been recognized as a marker of COPD severity, a role for hypercapnia in disease pathogenesis remains unclear. We provide evidence that CO2 acts as a signaling molecule in mouse and human airway smooth muscle cells. High CO2 activated calcium-calpain signaling and consequent smooth muscle cell contraction in mouse airway smooth muscle cells. The signaling was mediated by caspase-7-induced down-regulation of the microRNA-133a (miR-133a) and consequent up-regulation of Ras homolog family member A and myosin light-chain phosphorylation. Exposure of wild-type, but not caspase-7-null, mice to hypercapnia increased airway contraction and resistance. Deletion of the Caspase-7 gene prevented hypercapnia-induced airway contractility, which was restored by lentiviral transfection of a miR-133a antagonist. In a cohort of patients with severe COPD, hypercapnic patients had higher airway resistance, which improved after correction of hypercapnia. Our data suggest a specific molecular mechanism by which the development of hypercapnia may drive COPD pathogenesis and progression.


Asunto(s)
Caspasa 7/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Contracción Muscular , Músculo Liso/fisiopatología , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Acetilcolina/farmacología , Anciano , Anciano de 80 o más Años , Resistencia de las Vías Respiratorias , Animales , Calcio/metabolismo , Calpaína/metabolismo , Dióxido de Carbono , Enfermedad Crónica , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Hipercapnia/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
20.
BMC Dev Biol ; 6: 33, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16854219

RESUMEN

BACKGROUND: Development of the enteric nervous system (ENS) requires interactions between migrating neural crest cells and the nascent gastrointestinal tract that are dependent upon genes expressed by both cell compartments. Hlx, a homeobox transcription factor gene that is expressed in mouse intestinal and hepatic mesenchyme, is required for normal embryonic growth of intestine and liver, and the Hlx-/- genotype is embryonic lethal. We hypothesized that Hlx is required for ENS development. RESULTS: Enteric neurons were identified in Hlx+/+ and Hlx-/- mouse embryos by immunostaining of embryo sections for the neural markers PGP9.5 and Phox2b, or by staining for beta-galactosidase in whole-mount embryos containing the dopamine beta-hydroxylase-nLacZ transgene. In Hlx+/+ embryos, neural crest cells/enteric neurons have moved from the stomach into the intestine by E10.5. By contrast, neural crest cells/enteric neurons remain largely restricted to the lateral stomach mesenchyme of Hlx-/- embryos, with only a few scattered neural crest cells/enteric neurons in the intestine between E10.5-16.5. CONCLUSION: The Hlx homeobox transcription factor is required for early aspects of ENS development.


Asunto(s)
Sistema Nervioso Entérico/embriología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Sistema Nervioso Entérico/metabolismo , Femenino , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Inmunohistoquímica/métodos , Operón Lac/genética , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA