Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Biochem ; 478(11): 2473-2480, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36840799

RESUMEN

Bovine tuberculosis (bTB) is an infectious disease with significant impact on animal health, public health and international trade. Standard bTB screening in live cattle consists in injecting tuberculin and measuring the swelling at the place of injection few days later. This procedure is expensive, time-consuming, logistically challenging, and is not conclusive before performing confirmatory tests and additional analysis. The analysis of the volatile organic compounds (VOCs) emitted by non-invasive biological samples can provide an alternative diagnostic approach suitable for bTB screening. In the present study, we analyzed VOC samples emitted through the breath, feces and skin of 18 cows diagnosed with bTB from three farms from Romania, as well as of 27 negative cows for bTB from the same farms. Analytical studies employing gas chromatography coupled to mass spectrometry revealed 80 VOCs emitted through the breath, 200 VOCs released by feces, and 80 VOCs emitted through the skin. Statistical analysis of these compounds allowed the identification of 3 tentative breath VOC biomarkers (acetone; 4-methyldecane; D-limonene), 9 tentative feces VOC biomarkers (toluene; [(1,1-dimethylethyl)thio]acetic acid; alpha-thujene; camphene; phenol; o-cymene; 3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl-3-pentanol; 2,5-dimethylhexane-2,5-dihydroperoxide; 2,4-di-tert-butylphenol), and 3 tentative skin VOC biomarkers (ammonia; 1-methoxy-2-propanol; toluene). The possible pathway of these volatile biomarkers is discussed.

2.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467480

RESUMEN

More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12-24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.


Asunto(s)
Nariz Electrónica , Nanopartículas del Metal , Mycobacterium tuberculosis , Tuberculosis , Compuestos Orgánicos Volátiles , Animales , Animales Salvajes , Bovinos , Heces , Femenino , Oro , Humanos , Masculino , España , Sus scrofa , Porcinos , Tuberculosis/diagnóstico , Tuberculosis/veterinaria
3.
Sensors (Basel) ; 20(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392783

RESUMEN

Here we present a proof-of-concept study showing the potential of a chemical gas sensors system to identify the patients with alveolar echinococcosis disease through exhaled breath analysis. The sensors system employed comprised an array of three commercial gas sensors and a custom gas sensor based on WO3 nanowires doped with gold nanoparticles, optimized for the measurement of common breath volatile organic compounds. The measurement setup was designed for the concomitant measurement of both sensors DC resistance and AC fluctuations during breath samples exposure. Discriminant Function Analysis classification models were built with features extracted from sensors responses, and the discrimination of alveolar echinococcosis was estimated through bootstrap validation. The commercial sensor that detects gases such as alkane derivatives and ethanol, associated with lipid peroxidation and intestinal gut flora, provided the best classification (63.4% success rate, 66.3% sensitivity and 54.6% specificity) when sensors' responses were individually analyzed, while the model built with the AC features extracted from the responses of the cross-reactive sensors array yielded 90.2% classification success rate, 93.6% sensitivity and 79.4% specificity. This result paves the way for the development of a noninvasive, easy to use, fast and inexpensive diagnostic test for alveolar echinococcosis diagnosis at an early stage, when curative treatment can be applied to the patients.


Asunto(s)
Pruebas Respiratorias , Equinococosis , Nanopartículas del Metal , Compuestos Orgánicos Volátiles , Adulto , Anciano , Equinococosis/diagnóstico , Electrónica , Femenino , Oro , Humanos , Masculino , Persona de Mediana Edad
4.
J Infect Dis ; 219(1): 101-109, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016445

RESUMEN

Background: Human echinococcosis is a neglected infectious disease affecting more than 1 million people globally. Its diagnosis is expensive and difficult because of lack of adequate resources in low-resource locations, where most cases occur. Methods: A group of volunteers diagnosed with the 2 main types of echinococcosis and corresponding control groups were recruited from hospitals in Tunisia (32 patients with cystic echinococcosis and 43 controls) and Poland (16 patients with alveolar echinococcosis and 8 controls). Breath samples were collected from all patients and analyzed by gas chromatography coupled to mass spectrometry, and a specifically developed electronic nose system. Results: The chemical analysis revealed statistically different concentrations of 2 compounds in the breath of patients with cystic echinococcosis compared to controls, and statistically different concentrations of 7 compounds in the breath of patients with alveolar echinococcosis compared to controls. The discrimination accuracy achieved by the electronic nose system was 100% for cystic echinococcosis and 92.9% for alveolar echinococcosis, while the discrimination accuracy between these 2 patient groups was 92.1%. Conclusion: Here we advocate a noninvasive, fast, easy-to-operate and nonexpensive diagnostic tool for the diagnosis of human echinococcosis disease through exhaled breath analysis, suitable for early diagnosis and population screening.


Asunto(s)
Pruebas Respiratorias/métodos , Equinococosis/diagnóstico , Técnicas Electroquímicas/métodos , Espiración , Compuestos Orgánicos Volátiles/análisis , Adolescente , Adulto , Animales , Biomarcadores/análisis , Biomarcadores/química , Pruebas Respiratorias/instrumentación , Técnicas Electroquímicas/instrumentación , Nariz Electrónica , Femenino , Helmintiasis/diagnóstico , Helmintos/patogenicidad , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Polonia , Túnez , Adulto Joven
5.
Nanotechnology ; 29(6): 065603, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29206108

RESUMEN

Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

6.
ACS Sens ; 3(12): 2532-2540, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30403135

RESUMEN

Human cutaneous leishmaniasis, although designated as one of the most neglected tropical diseases, remains underestimated due to its misdiagnosis. The diagnosis is mainly based on the microscopic detection of amastigote forms, isolation of the parasite, or the detection of Leishmania DNA, in addition to its differential clinical characterization; these tools are not always available in routine daily practice, and they are expensive and time-consuming. Here, we present a simple-to-use, noninvasive approach for human cutaneous leishmaniasis diagnosis, which is based on the analysis of volatile organic compounds in exhaled breath with an array of specifically designed chemical gas sensors. The study was realized on a group of n = 28 volunteers diagnosed with human cutaneous leishmaniasis and a group of n = 32 healthy controls, recruited in various sites from Tunisia, an endemic country of the disease. The classification success rate of human cutaneous leishmaniasis patients achieved by our sensors test was 98.2% accuracy, 96.4% sensitivity, and 100% specificity. Remarkably, one of the sensors, based on CuNPs functionalized with 2-mercaptobenzoxazole, yielded 100% accuracy, 100% sensitivity, and 100% specificity for human cutaneous leishmaniasis discrimination. While AuNPs have been the most extensively used in metal nanoparticle-ligand sensing films for breath sensing, our results demonstrate that chemical sensors based on ligand-capped CuNPs also hold great potential for breath volatile organic compounds detection. Additionally, the chemical analysis of the breath samples with gas chromatography coupled to mass spectrometry identified nine putative breath biomarkers for human cutaneous leishmaniasis.


Asunto(s)
Pruebas Respiratorias/métodos , Leishmaniasis Cutánea/diagnóstico , Nanopartículas del Metal/química , Compuestos Orgánicos Volátiles/análisis , Adolescente , Adulto , Benzoxazoles/química , Biomarcadores/análisis , Cobre/química , Técnicas Electroquímicas/métodos , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Oro/química , Humanos , Masculino , Persona de Mediana Edad , Platino (Metal)/química , Compuestos de Sulfhidrilo/química , Adulto Joven
7.
Oncotarget ; 9(48): 28805-28817, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29988892

RESUMEN

We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA