Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Chem ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317503

RESUMEN

Lateral flow immunoassay (LFIA) has played a vital role in point-of-care (POC) testing on account of its simplicity, rapidity, and low cost. However, the low sensitivity and difficulty of quantitation limit its further development. Sensitive markers with new detection modes are being developed to dramatically improve LFIA's performance. Herein, a ligand-complex approach was proposed to uniformly coat a thin layer of Au onto Ag triangular nanoplates (Ag TNPs) without etching the Ag cores, which not only retain the unique optical properties from Ag TNPs but also acquire the surface stability and biocompatibility of gold. The localized surface plasmon resonance absorption of these Ag@Au TNPs could be finely adjusted from visible (550 nm) to the second near-infrared region (NIR-II) (1100 nm), and even longer, by simply adjusting the ratio between edge length and thickness. Utilizing the Ag@Au TNPs as new markers for LFIA, a highly sensitive colorimetric and photothermal dual-mode detection of the SARS-CoV-2 nucleocapsid protein was achieved with a very low background. The Ag@Au TNPs showed an exceedingly high photothermal conversion efficiency of 61.4% (ca. 2 times higher than that of Au nanorods), endowing the LFIA method with a low photothermal detection limit (40 pg/mL), which was 25-fold lower than that of the colorimetric results. The generality of the method was further verified by the sensitive and accurate analysis of cardiac troponin I (cTnI). This method is robust, reproducible, and highly specific and has been successfully applied to SARS-COV-2 detection in 35 clinical samples with satisfactory results, demonstrating its potential for POC applications.

2.
Anal Chem ; 96(15): 6065-6071, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569047

RESUMEN

The conventional lateral flow immunoassay (LFIA) method using colloidal gold nanoparticles (Au NPs) as labeling agents faces two inherent limitations, including restricted sensitivity and poor quantitative capability, which impede early viral infection detection. Herein, we designed and synthesized CsPbBr3 perovskite quantum dot-based composite nanoparticles, CsPbBr3@SiO2@Fe3O4 (CSF), which integrated fluorescence detection and magnetic enrichment properties into LFIA technology and achieved rapid, sensitive, and convenient quantitative detection of the SARS-CoV-2 virus N protein. In this study, CsPbBr3 served as a high-quantum-yield fluorescent signaling probe, while SiO2 significantly enhanced the stability and biomodifiability of CsPbBr3. Importantly, the SiO2 shell shows relatively low absorption or scattering toward fluorescence, maintaining a quantum yield of up to 74.4% in CsPbBr3@SiO2. Assembly of Fe3O4 nanoparticles mediated by PEI further enhanced the method's sensitivity and reduced matrix interference through magnetic enrichment. Consequently, the method achieved a fluorescent detection range of 1 × 102 to 5 × 106 pg·mL-1 after magnetic enrichment, with a limit of detection (LOD) of 58.8 pg·mL-1, representing a 13.3-fold improvement compared to nonenriched samples (7.58 × 102 pg·mL-1) and a 2-orders-of-magnitude improvement over commercial colloidal gold kits. Furthermore, the method exhibited 80% positive and 100% negative detection rates in clinical samples. This approach holds promise for on-site diagnosis, home-based quantitative tests, and disease procession evaluation.


Asunto(s)
Nanopartículas del Metal , Dióxido de Silicio , Oro , Colorantes Fluorescentes , Inmunoensayo/métodos , Oro Coloide
3.
Molecules ; 29(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125086

RESUMEN

Interleukin-6 (IL-6) detection and monitoring are of great significance for evaluating the progression of many diseases and their therapeutic efficacy. Lateral flow immunoassay (LFIA) is one of the most promising point-of-care testing (POCT) methods, yet suffers from low sensitivity and poor quantitative ability, which greatly limits its application in IL-6 detection. Hence, in this work, we integrated Aushell nanoparticles (NPs) as new LFIA reporters and achieved the colorimetric and photothermal dual-mode detection of IL-6. Aushell NPs were conveniently prepared using a galvanic exchange process. By controlling the shell thickness, their localized surface plasmon resonance (LSPR) peak was easily tuned to near-infrared (NIR) range, which matched well with the NIR irradiation light. Thus, the Aushell NPs were endowed with good photothermal effect. Aushell NPs were then modified with IL-6 detection antibody to construct Aushell probes. In the LFIA detection, the Aushell probes were combined with IL-6, which were further captured by the capture IL-6 antibody on the test line of the strip, forming a colored band. By observation with naked eyes, the colorimetric qualitative detection of IL-6 was achieved with limit of 5 ng/mL. By measuring the temperature rise of the test line with a portable infrared thermal camera, the photothermal quantitative detection of IL-6 was performed from 1~1000 ng/mL. The photothermal detection limit reached 0.3 ng/mL, which was reduced by nearly 20 times compared with naked-eye detection. Therefore, this Aushell-based LFIA efficiently improved the sensitivity and quantitative ability of commercial colloidal gold LFIA. Furthermore, this method showed good specificity, and kept the advantages of convenience, speed, cost-effectiveness, and portability. Therefore, this Aushell-based LFIA exhibits practical application potential in IL-6 POCT detection.


Asunto(s)
Colorimetría , Oro , Interleucina-6 , Interleucina-6/análisis , Oro/química , Inmunoensayo/métodos , Colorimetría/métodos , Humanos , Nanocáscaras/química , Resonancia por Plasmón de Superficie/métodos , Nanopartículas del Metal/química , Límite de Detección , Técnicas Biosensibles/métodos
4.
Anal Bioanal Chem ; 415(4): 545-554, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414739

RESUMEN

Serological antibody tests are useful complements of nuclei acid detection for SARS-CoV-2 diagnosis, which can significantly improve diagnostic accuracy. However, antibody detection in serum or plasma remains challenging to do with high sensitivity. In this study, Ag nanoparticles with ultra-thin Au shells embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured and then assembled onto Fe3O4 surface by electrostatic interaction to construct the Fe3O4-AgMBA@Au nanoparticles (NPs) with magnetic-Raman-colorimetric properties. Based on the composite nanoparticles, a colorimetric and Raman dual-mode lateral flow immunoassay (LFIA) for ultrasensitive identification of SARS-CoV-2 nucleocapsid (N) protein antibody was constructed. The magnetic nanoparticles (Fe3O4 NPs) were acted as the core and coated a layer of AgMBA@Au particles on the surface by electrostatic interaction to prepare Fe3O4-AgMBA@Au NPs, which can amplify the SERS signal due to multiple AgMBA@Au particles concentrated on a single magnetic nanoparticle. Moreover, the Fe3O4-AgMBA@Au NPs facilitated pre-purifying sample using magnetic separation, and complex matrix interference would be greatly decreased in the detection. The Fe3O4-AgMBA@Au NPs modified with N protein recognized and bound with N protein antibodies, which were trapped on the T-line, forming color band for observing detection. Under optimal conditions, the N protein antibodies could be qualitatively detected in colorimetric mode with the visual limit of 10-8 mg/mL and quantitatively detected by SERS signals between 10-6 and 10-10 mg /mL with 0.08 pg/mL detection limit. The coefficients variations (CV) of intra-assay was 8.0%, whereas of inter-assay was 11.7%, confirming of good reproducibility. Finally, this approach was able to discriminate between positive, negative, and weakly positive samples when detecting 107 clinical serum samples. The process enables highly sensitive quantitative assays that are valuable for evaluating disease processes and guiding treatment. Colorimetric and Raman dual-mode LFIA detection of SARS-CoV-2 N protein antibody based on Fe3O4-AgMBA@Au nanoparticles.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Oro , Nanopartículas del Metal , SARS-CoV-2 , Plata , Humanos , Colorimetría , COVID-19/diagnóstico , Prueba de COVID-19 , Inmunoensayo , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología , Espectrometría Raman , Proteínas de la Nucleocápside de Coronavirus/inmunología , Anticuerpos Antivirales/análisis
5.
Mikrochim Acta ; 190(2): 57, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652031

RESUMEN

Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA.


Asunto(s)
Nanopartículas del Metal , Nanopartículas Multifuncionales , Salmonella typhimurium , Colorimetría , Reproducibilidad de los Resultados , Inmunoensayo
6.
Anal Chem ; 94(23): 8466-8473, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35657150

RESUMEN

Immunoglobulin detection is essential for diagnosing progression of SARS-CoV-2 infection, for which SARS-CoV-2 IgG is one of the most important indexes. In this paper, Ag nanoparticles with ultrathin Au shells (∼2 nm) embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured via a ligand-assisted epitaxial growth method and integrated into lateral flow immunoassay (LFIA) for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. AgMBA@Au possessed not only the surface chemistry advantages of Au but also the superior optical characteristics of Ag. Moreover, the nanogap between the Ag core and the Au shell also greatly enhanced the Raman signal. After being modified with anti-human antibodies, AgMBA@Au recognized and combined with SARS-CoV-2 IgG, which was captured by the SARS-CoV-2 spike protein on the T line. Qualitative analysis was achieved by visually observing the color of the T line, and quantitative analysis was conducted by measuring the SERS signal with a sensitivity four orders of magnitude higher (detection limit: 0.22 pg/mL). The intra-assay and inter-assay variation coefficients were 7.7 and 10.3%, respectively, and other proteins at concentrations of 10 to 20 times higher than those of SARS-CoV-2 IgG could hardly produce distinguishable signals, confirming good reproducibility and specificity. Finally, this method was used to detect 107 clinical serum samples. The results agreed well with those obtained from enzyme-linked immunosorbent assay kits and were significantly better than those of the colloidal gold test strips. Therefore, this dual-mode LFIA has great potential in clinical practical applications and can be used to screen and trace the early immune response of SARS-CoV-2.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Anticuerpos Antivirales , COVID-19/diagnóstico , Colorimetría , Humanos , Inmunoensayo/métodos , Inmunoglobulina G , Reproducibilidad de los Resultados , SARS-CoV-2 , Plata , Espectrometría Raman/métodos , Glicoproteína de la Espiga del Coronavirus
7.
Small ; 17(51): e2104596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34741431

RESUMEN

Magnetic relaxation switching (MRS) sensors have shown great potential in food safety monitoring due to their high signal-to-noise ratio and simplicity, but they often suffer from insufficient sensitivity and stability due to the lack of excellent magnetic nanoprobes. Herein, dumbbell-like Au-Fe3 O4 nanoparticles are designed as magnetic nanoprobes for developing an aflatoxin B1-MRS immunosensor. The Fe3 O4 portion in the Au-Fe3 O4 nanoparticles functions as the magnetic probe to provide transverse relaxation signals, while the Au segments serve as a bridge to grow Ag shell and assemble the Au-Fe3 O4 nanoparticles, thus modulating transverse relaxation time of surrounding water molecular. The formation of Ag@Au-Fe3 O4 is triggered by hydrogen peroxide. After degraded by horseradish peroxidase, hydrogen peroxide reduces Ag+ to Ag nanoparticles which assemble dispersed Au-Fe3 O4 to aggregated Ag@Au-Fe3 O4 , thus dramatically improving the sensitivity of traditional MRS sensor. Combined with competitive immunoreaction, this Ag@Au-Fe3 O4 -MRS immunosensor can detect aflatoxin B1 with a high sensitivity (3.81 pg mL-1 ), which improved about 21 folds and 9 folds than those of enzyme-linked immunosorbent assay and high-performance liquid chromatography (HPLC), respectively. The good consistency with HPLC in real samples detection indicates the good accuracy of this immunosensor. This Ag@Au-Fe3 O4 -MRS immunosensor offers an attractive tool for detection of harmful substances.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Aflatoxina B1/análisis , Oro , Peróxido de Hidrógeno , Inmunoensayo , Fenómenos Magnéticos , Plata
8.
Anal Chem ; 92(14): 9989-9996, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32551556

RESUMEN

In situ monitoring of products generated by important heterogeneous catalytic reactions is of great significance for chemical industry, particularly when the products or intermediates are not sufficiently stable or occur at trace-level concentrations. It is therefore highly desirable to develop an integrated in situ catalysis and extraction method, which can simultaneously catalyze the reaction and enrich products while maintaining compatibility with analytical instrumentation. Herein, we propose an approach by depositing different types of metal nanocrystals, including gold, platinum, and palladium nanoparticles, onto fibrous silica microspheres coated fibers for integrated in situ catalysis and extraction. As a proof-of-concept, several typical chemical reactions, including the reduction of p-nitrophenol, epoxidation of styrene, oxidation of benzyl alcohol, and dechlorination of p-chlorophenol, were investigated to validate the feasibility of this method. Our results show that these coatings not only function as catalysts to accelerate the selected reactions but also serve as adsorbents to extract the reactants, intermediates, and products for direct gas chromatographic analysis, suggesting the viability of this approach for the in situ evaluation of catalytic processes. By this approach, the yield, selectivity, and kinetics of a reaction can be readily assessed. This approach can also be extended to investigate the catalytic performance of the same metal nanocrystals with different morphology, surface facet, structure, or surface functionalization. This approach will find broad generality for assessing the catalytic efficiency and selectivity of new catalysts or new chemical reactions and dynamic processes in these reactions.

9.
Analyst ; 144(15): 4582-4588, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31236555

RESUMEN

Plasmonic nanostructures have been broadly used for chemical detections, but their applications are limited by slow detection rates, insufficient visual resolution and sensitivity due to the chemical and structural stability of conventional plasmonic nanomaterials. It is thus essential to develop strategies to enhance the detection kinetics while promoting their excellent plasmonic properties. In this work, a colorimetric assay for HCHO measurement is developed based on the fact that HCHO can react with Tollens' reagent to anisotropically deposit a layer of silver shells onto the bone-shaped gold nanorod (Au NR) cores. Compared to the routine rod-shaped Au NRs, the bone-shaped Au NRs facilitate the deposition of Ag onto the sunken section due to their unique concave structures, giving rise to fast reaction kinetics and detection rate. It is also important to point out that the surface ligand exchange from CTAB to CTAC is helpful to accelerate the deposition of silver onto Au NRs, which significantly shortens the reaction time. The preferential deposition of Ag on the concave Au NRs induces more dramatic morphology changes and therefore promotes the plasmonic shift of the bone-shaped Au NRs and improves the sensing efficiency. Correspondingly, the apparent color of the solution changes from light gray to dark blue, purple, red, orange and finally to yellow as the longitudinal localized surface plasmon resonance (LSPR) band shifts from 710 to 500 nm along with the emergence of a new LSPR band at 400 nm almost covering the full visible region. The colorimetric method developed enables sensitive detection of HCHO with a low detection limit (1 nM), wide linear range (0.1-50 µM), high visual resolution and good specificity against other common indoor gases. It was successfully applied to the detection of gaseous HCHO present in the air collected from a furniture plaza, showing its potential practicality for on-site HCHO analysis.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cetrimonio/química , Formaldehído/análisis , Oro/química , Nanotubos/química , Hidróxido de Amonio/química , Anisotropía , Colorimetría/métodos , Límite de Detección , Nitrato de Plata/química , Resonancia por Plasmón de Superficie/métodos
10.
Phys Chem Chem Phys ; 20(9): 6330-6336, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29435544

RESUMEN

A covalently linked tetracene trimer with a "face-to-face" stacked structure was prepared and its molecular structure is characterized by 1H NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure reveals that three tetracene subunits within this trimer adopt a partially "face-to-face" stacked configuration. Its absorption spectrum differs significantly from that of the monomeric and dimeric counterparts in solution due to the strong ground state interactions between the neighboring tetracene subunits. Its fluorescence is almost quenched completely. An ultrafast fluorescence decay component is observed in its fluorescence dynamics, indicating the presence of an ultrafast nonradiative decay channel in the trimer. The nonradiative channel is proved to be intramolecular singlet fission (iSF) by femto-second transient absorption studies. Different from the strongly coupled triplet state observed in the corresponding dimer, weakly coupled triplet states can be formed in this trimer. The triplet quantum yield of trimer 4 can reach up to 126% in solution.

11.
Mikrochim Acta ; 185(1): 77, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29594414

RESUMEN

A one-step sandwich method is described for detecting proteins with magnetic nanospheres (MNs) and fluorescent nanospheres (FNs). Thrombin is selected as a model analyte to validate the method. Two DNA aptamers (Apt 29 and Apt 15 targeting two different exosites of thrombin) are chosen as recognition elements to modify MNs and FNs. The superparamagnetic MN-Apt 29 conjugate is used to separate and concentrate thrombin. The FN-Apt 15 conjugate encapsulates hundreds of fluorescent quantum dots and is used as reporter to provide a stable signal. Magnetic capture and fluorescence identification are performed simultaneously to form a sandwich complex (MN-Apt 29-thrombin-FN-Apt 15) for fluorescence determination (at excitation/emission wavelengths of 380/622 nm). The method is convenient, time saving, and gives a strong signal (compared to the two-step method where capture and identification are performed in two steps). The one-step method presented here is completed within 30 min and has a 3.5 ng·mL-1 (97 pM) detection limit. The method is reproducible, has an intra-assay variability of 1.5%, and an inter-assay variability of 4.9%. Other serum proteins (HSA, CEA, PSA, and AFP) do not interfere. The method was also applied to analyze serum samples. Almost the same fluorescence intensity was measured when analyzing 1% serum samples (compared to buffer samples). Graphical abstract Magnetic nanospheres with excellent superparamagnetic property and fluorescent QD-based nanospheres were prepared and used in a one-step sensitive method for detecting thrombin. The method exhibits good reproducibility, high specificity, and good selectivity.


Asunto(s)
Aptámeros de Nucleótidos/química , Nanosferas/química , Trombina/análisis , Fluorescencia , Límite de Detección , Magnetismo , Puntos Cuánticos , Reproducibilidad de los Resultados
12.
Anal Chem ; 88(20): 10134-10142, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27633565

RESUMEN

Number concentration of nanoparticles is a critical and challenging parameter to be identified. Recently, gravimetric strategy is a fundamental method for absolute quantification, which is widely accepted and used by researchers, yet limited by the inaccuracy in measuring related parameters (e.g, density). Hence, we introduced isopycnic gradient centrifugation to determine the nanopartices' density and improved the current gravimetric method for more accuracy. In this work, polymer nanospheres were used as a model to validate this method. Through isopycnic gradient centrifugation, nanospheres finally reached the zone of equal density as them. By measuring the density of the medium solution in this zone, the nanospheres' density was identified. Then, the density was multiplied by the volume of a single nanosphere characterized by transmission electron microscopy (TEM), and the average weight of a single nanosphere was obtained. Using total weight of the nanospheres divided by the unit weight, their number concentration was quantified. Directly using the real density of the nanoparticles achieved more accurate quantification than the current gravimetric method which used the density of the bulk material counterparts for calculation. Besides, compared with the viscosity/light scattering method and the high-sensitivity flow cytometry (HSFCM) method (another two kinds of typical methods respectively based on light measurements and single particle counting), the improved gravimetric method showed better reproducibility and more convenience. Further, we modified the nanospheres with streptavidin (SA) and antibody, and through biorecognition interaction, we determined the amount of the active affinity sites on each biofunctional nanosphere. Moreover, their bioactivity in different storage conditions was monitored, which showed good stability even in PBS at 4 °C over one year. Our work provided a promising method for more accurately determining the absolute number concentration of nanoparticles and the active affinity sites on their surfaces, which would greatly facilitate their downstream applications.

13.
Anal Chem ; 88(12): 6577-84, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27253137

RESUMEN

Sensitive and quantitative detection of protein biomarkers with a point-of-care (POC) assay is significant for early diagnosis, treatment, and prognosis of diseases. In this paper, a quantitative lateral flow assay with high sensitivity for protein biomarkers was established by utilizing fluorescent nanospheres (FNs) as reporters. Each fluorescent nanosphere (FN) contains 332 ± 8 CdSe/ZnS quantum dots (QDs), leading to its superstrong luminescence, 380-fold higher than that of one QD. Then a detection limit of 27.8 pM C-reaction protein (CRP) could be achieved with an immunofluorescent nanosphere (IFN)-based lateral flow test strip. The assay was 257-fold more sensitive than that with a conventional Au-based lateral flow test strip for CRP detection. Besides, the fluorescence intensity of FNs and bioactivity of IFNs were stable during 6 months of storage. Hence, the assay owns good reproducibility (intra-assay variability of 5.3% and interassay variability of 6.6%). Furthermore, other cancer biomarkers (PSA, CEA, AFP) showed negative results by this method, validating the excellent specificity of the method. Then the assay was successfully applied to quantitatively detect CRP in peripheral blood plasma samples from lung cancer and breast cancer patients, and healthy people, facilitating the diagnosis of lung cancer. It holds a good prospect of POC protein biomarker detection.


Asunto(s)
Proteína C-Reactiva/análisis , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/química , Inmunoconjugados/química , Nanosferas/química , Tiras Reactivas/análisis , Animales , Técnicas Biosensibles/métodos , Compuestos de Cadmio/química , Fluoroinmunoensayo/métodos , Cabras , Humanos , Límite de Detección , Ratones , Neoplasias/sangre , Sistemas de Atención de Punto , Puntos Cuánticos/química , Reproducibilidad de los Resultados , Compuestos de Selenio/química , Sulfuros/química , Compuestos de Zinc/química
14.
Small ; 11(39): 5280-8, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26280101

RESUMEN

Avian influenza A(H7N9) virus, which emerged in China in the spring of 2013, has infected hundreds of people and resulted in many deaths. Herein, a rapid and quantitative assay is proposed for the one-step detection of H7N9 virions. Immunomagnetic nanospheres (IMNs) and antibody-conjugated quantum dots (Ab-QDs) are simultaneously employed to capture and identify the target virus, leading to a high efficiency, good specificity, and strong anti-interference ability. Moreover, this reliable detection assay, which combines the efficient magnetic enrichment and the unique photophysical properties of QDs, can achieve a high sensitivity for a low detection limit. At the same time, this detection strategy shows great flexibility for employment in a variety of fluorescence detectors, including fluorescence spectrometry, microscope assays, and handheld UV lamp tests. Furthermore, our one-step detection strategy induces very little change in the integrity of the vulnerable virions, which enables additional genotyping testing following the fluorescence detection. The present study, thus, reports a rapid and quantitative approach for the detection of H7N9 virions based on simultaneous magnetic capture and QD labeling, thereby providing a higher probability for detection and therefore faster diagnosis of H7N9-infected patients.


Asunto(s)
Separación Inmunomagnética/métodos , Subtipo H7N9 del Virus de la Influenza A/ultraestructura , Microscopía Fluorescente/métodos , Puntos Cuánticos , Carga Viral/métodos , Virión/ultraestructura , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Virión/aislamiento & purificación
15.
Biophys J ; 107(1): 165-73, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988351

RESUMEN

Bead-based assay is widely used in many bioanalytical applications involving the attachment of proteins and other biomolecules to the surface. For further understanding of the formation of a sphere-biomolecule complex and easily optimizing the use of spheres in targeted biological applications, it is necessary to know the kinetics of the binding reaction at sphere/solution interface. In our presented work, a simple fluorescence analysis method was employed to measure the kinetics for the binding of biotin to sphere surface-bound FITC-SA, based on the fact that the fluorescence intensity of FITC was proportionally enhanced by increasing the binding amount of biotin. By monitoring the time-dependent changes of FITC fluorescence, it was found that the binding rate constant of biotin to sphere surface-immobilized FITC-SA was much smaller than that of biotin to freely diffusing FITC-SA. This can be attributed to the decreased encounter frequency of the reaction pair, restricted motion of the attached biomolecule, and the weakened steric accessibility of the binding site. These factors would become more obvious when increasing the size of the sphere upon which the FITC-SA was immobilized. Additionally, the effect of nanoparticles on the diffusion-controlled bimolecular binding reaction was more evident than that on the chemical recognition-controlled binding reaction.


Asunto(s)
Biotina/química , Fluoresceína-5-Isotiocianato/química , Microesferas , Estreptavidina/química
16.
Anal Chem ; 86(9): 4618-26, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24716801

RESUMEN

Early detection and isolation of circulating tumor cells (CTCs) can provide helpful information for diagnosis, and functional readouts of CTCs can give deep insight into tumor biology. In this work, we presented a new strategy for simple isolation and release of CTCs using engineered nanobioprobes. The nanobioprobes were constructed by Ca(2+)-assisted layer-by-layer assembly of alginate onto the surface of fluorescent-magnetic nanospheres, followed by immobilization of biotin-labeled anti-EpCAM. As-prepared anti-EpCAM-functionalized nanobioprobes were characterized with integrated features of anti-EpCAM-directed specific recognition, fluorescent magnetic-driven cell capture, and EDTA-assisted cell release, which can specifically recognize 10(2) SK-BR-3 cells spiked in 1 mL of lysed blood or human whole blood samples with 89% and 86% capture efficiency, respectively. Our proof-of-concept experiments demonstrated that 65% of captured SK-BR-3 cells were released after EDTA treatment, and nearly 70% of released SK-BR-3 cells kept their viability, which may facilitate molecular profiling and functional readouts of CTCs.


Asunto(s)
Sondas Moleculares , Nanoestructuras , Neoplasias/patología , Fluorescencia , Humanos
17.
Anal Methods ; 16(34): 5777-5784, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39145405

RESUMEN

Sensitive, convenient and rapid detection and subtyping of influenza viruses are crucial for timely treatment and management of infected people. Compared with antigen detection, nucleic acid detection has higher specificity and can shorten the detection window. Hence, in this work, we improved the lateral flow assay (LFA, one of the most promising user-friendly and on-site methods) to achieve detection and subtyping of H1N1, H3N2 and H9N2 influenza virus nucleic acids. Firstly, the antigen-antibody recognition mode was transformed into a nucleic acid hybridization reaction. Secondly, Fe3O4-Au heterodimer nanoparticles were prepared to replace frequently used Au nanoparticles to obtain better coloration. Thirdly, four lines were arranged on the LFA strip, which were three test (T) lines and one control (C) line. Three T lines were respectively sprayed by the DNA sequences complementary to one end of H1N1, H3N2 and H9N2 influenza virus nucleic acids, while Fe3O4-Au nanoparticles were respectively coupled with the DNA sequences complementary to the other end of H1N1, H3N2 and H9N2 nucleic acids to construct three kinds of probes. The C line was sprayed by the complementary sequences to the DNAs on all three kinds of probes. In the detection, by hybridization reaction, the probes were combined with their target nucleic acids which were captured by the corresponding T lines to form color bands. Finally, according to the position of the color bands and their grey intensity, simultaneous qualitative and semi-quantitative detection of the three influenza virus nucleic acids was realized. The detection results showed that this multi-channel LFA had good specificity, and there was no significant cross reactivity among the three subtypes of influenza viruses. The simultaneous detection achieved comparable detection limits with individual detections. Therefore, this multi-channel LFA had good application potential for sensitive and rapid detection and subtyping of influenza viruses.


Asunto(s)
Oro , Oro/química , Humanos , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Nanopartículas del Metal/química , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/química , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Hibridación de Ácido Nucleico/métodos , ADN Viral/análisis , Gripe Humana/diagnóstico , Nanopartículas de Magnetita/química , Límite de Detección
18.
Anal Chem ; 85(24): 11929-35, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24191690

RESUMEN

In this study, we report a simple method for simultaneous detection of multiplex DNA sequences, including complementary DNA (cDNA) sequences of HIV and HCV, DNA sequence of HBV, with QDs-encoded fluorescent nanospheres and nano-γ-Fe2O3-coated magnetic nanospheres. Detection was achieved on a fluorescence spectrophotometer without additional auxiliary instruments, and the detection limit was about 100 pM. Here, QDs-encoded fluorescent nanospheres (FNS) with different photoluminescent properties, and magnetic nanospheres (MNS) were separately fabricated by stepwise assembly of hydrophobic QDs or nano-γ-Fe2O3 on the surface of branched poly(ethylene imine) (PEI)-coated nanospheres in precisely controlled amounts, finally followed by silica encapsulation. FNS-labeled probe DNAs and MNS-labeled capture DNAs were used to hybridize with the corresponding targets at the same time. After magnetic separation, the sandwich-structured adducts were measured by fluorescence spectrophotometry. The results indicated that the targets could be detected with high sensitivity. This method is convenient, fast enough, and capable of high anti-interference. Therefore, it is expected to be used for simultaneous detection and separation of multiple targets at high levels of purity and throughput.


Asunto(s)
ADN/genética , ADN/aislamiento & purificación , Nanosferas/química , Fenómenos Ópticos , Espectrometría de Fluorescencia/métodos , Secuencia de Bases , ADN/sangre , Puntos Cuánticos , Factores de Tiempo
19.
Anal Chem ; 85(2): 1223-30, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23256523

RESUMEN

Sensitive, rapid, and reliable detection of bacteria has always been pursued due to the great threat of the bacteria to human health. In this study, a convenient one-step strategy for detecting Salmonella typhimurium was developed. Immunomagnetic nanospheres (IMNS) and immunofluorescent nanospheres (IFNS) were used to specifically capture and recognize S. typhimurium simultaneously. After magnetic separation, the sandwich immune complexes (IMNS-bacteria-IFNS) were detected under a fluorescence microscope with a detection limit as low as ca. 10 CFU/mL. When they were detected by fluorescence spectrometer, a linear range was exhibited at the concentration from 10(5) to 10(7) CFU/mL with R(2) = 0.9994. Compared with the two-step detection strategy, in which the bacteria were first captured with the IMNS and subsequently identified with the IFNS, this one-step strategy simplified the detection process and improved the sensitivity. Escherichia coli and Shigella flexneri both showed negative results with this method, indicating that this method had excellent selectivity and specificity. Moreover, this method had strong anti-interference ability, and it had been successfully used to detect S. typhimurium in synthetic samples (milk, fetal bovine serum, and urine), showing the potential application in practice.


Asunto(s)
Fluorescencia , Nanopartículas de Magnetita/química , Nanosferas/química , Salmonella typhimurium/aislamiento & purificación , Tamaño de la Partícula , Salmonella typhimurium/inmunología , Espectrometría de Fluorescencia , Propiedades de Superficie
20.
Biosens Bioelectron ; 241: 115688, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714062

RESUMEN

Traditional lateral flow immunoassays (LFIA) suffer from insufficient sensitivity, difficulty for quantitation, and susceptibility to complex substrates, limiting their practical application. Herein, we developed a polyethylenimine (PEI)-mediated approach for assembling high-density Au nanoshells onto Fe3O4 nanoclusters (MagAushell) as LFIA labels for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein (N protein). PEI layer served not only as "binders" to Fe3O4 nanoclusters and Au nanoshells, but also "barriers" to ambient environment. Thus, MagAushell not only combined magnetic and photothermal properties, but also showed good stability. With MagAushell, N protein was first separated and enriched from complex samples, and then loaded to the strip for detection. By observation of the color stripes, qualitative detection was performed with naked eye, and by measuring the temperature change under laser irradiation, quantification was attained free of sophisticated instruments. The introduction of Fe3O4 nanoclusters facilitated target purification and enrichment before LFIA, which greatly improved the anti-interference ability and increased the detection sensitivity by 2 orders compared with those without enrichment. Moreover, the high loading density of Au nanoshells on one Fe3O4 nanocluster enhanced the photothermal signal of the nanoprobe significantly, which could further increase the detection sensitivity. The photothermal detection limit reached 43.64 pg/mL which was 1000 times lower than colloidal gold strips. Moreover, this method was successfully applied to real samples, showing great application potential in practice. We envision that this LFIA could serve not only for SARS-CoV-2 detection but also as a general test platform for other biotargets in clinical samples.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Nanocáscaras , Humanos , SARS-CoV-2 , Colorimetría , COVID-19/diagnóstico , Proteínas de la Nucleocápside , Inmunoensayo , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA