Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513250

RESUMEN

Tea polyphenol and epigallocatechin gallate (EGCG) were considered as key components of tea. The rapid prediction of these two components can be beneficial for tea quality control and product development for tea producers, breeders and consumers. This study aimed to develop reliable models for tea polyphenols and EGCG content prediction during the breeding process using Fourier Transform-near infrared (FT-NIR) spectroscopy combined with machine learning algorithms. Various spectral preprocessing methods including Savitzky-Golay smoothing (SG), standard normal variate (SNV), vector normalization (VN), multiplicative scatter correction (MSC) and first derivative (FD) were applied to improve the quality of the collected spectra. Partial least squares regression (PLSR) and least squares support vector regression (LS-SVR) were introduced to establish models for tea polyphenol and EGCG content prediction based on different preprocessed spectral data. Variable selection algorithms, including competitive adaptive reweighted sampling (CARS) and random forest (RF), were further utilized to identify key spectral bands to improve the efficiency of the models. The results demonstrate that the optimal model for tea polyphenols calibration was the LS-SVR with Rp = 0.975 and RPD = 4.540 based on SG-smoothed full spectra. For EGCG detection, the best model was the LS-SVR with Rp = 0.936 and RPD = 2.841 using full original spectra as model inputs. The application of variable selection algorithms further improved the predictive performance of the models. The LS-SVR model for tea polyphenols prediction with Rp = 0.978 and RPD = 4.833 used 30 CARS-selected variables, while the LS-SVR model build on 27 RF-selected variables achieved the best predictive ability with Rp = 0.944 and RPD = 3.049, respectively, for EGCG prediction. The results demonstrate a potential of FT-NIR spectroscopy combined with machine learning for the rapid screening of genotypes with high tea polyphenol and EGCG content in tea leaves.


Asunto(s)
Polifenoles , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Polifenoles/análisis , Análisis de Fourier , Análisis de los Mínimos Cuadrados , Algoritmos , Aprendizaje Automático , Té/química , Hojas de la Planta/química , Máquina de Vectores de Soporte
2.
Anal Bioanal Chem ; 414(23): 6881-6897, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35947156

RESUMEN

Citrus Huanglongbing (HLB) is nowadays one of the most fatal citrus diseases worldwide. Once the citrus tree is infected by the HLB disease, the biochemistry of the phloem region in midribs would change. In order to investigate the carbohydrate changes in phloem region of citrus midrib, the semi-quantification models were established to predict the carbohydrate concentration in it based on Fourier transform infrared microscopy (micro-FTIR) spectroscopy coupled with chemometrics. Healthy, asymptomatic-HLB, symptomatic-HLB, and nutrient-deficient citrus midribs were collected in this study. The results showed that the intensity of the characteristic peak varied with the carbohydrate (starch and soluble sugar) concentration in citrus midrib, especially at the fingerprint regions of 1175-900 cm-1, 1500-1175 cm-1, and 1800-1500 cm-1. Furthermore, semi-quantitative prediction models of starch and soluble sugar were established using the full micro-FTIR spectra and selected characteristic wavebands. The least squares support vector machine regression (LS-SVR) model combined with the random frog (RF) algorithm achieved the best prediction result with the determination coefficient of prediction ([Formula: see text]) of 0.85, the root mean square error of prediction (RMSEP) of 0.36%, residual predictive deviation (RPD) of 2.54, and [Formula: see text] of 0.87, RMSEP of 0.37%, RPD of 2.76, for starch and soluble sugar concentration prediction, respectively. In addition, multi-layer perceptron (MLP) classification models were established to identify HLB disease, achieving the overall classification accuracy of 94% and 87%, based on the full-range spectra and the optimal wavenumbers selected by the random frog (RF) algorithm, respectively. The results demonstrated that micro-FTIR spectroscopy can be a valuable tool for the prediction of carbohydrate concentration in citrus midribs and the detection of HLB disease, which would provide useful guidelines to detect citrus HLB disease.


Asunto(s)
Citrus , Carbohidratos/análisis , Citrus/química , Enfermedades de las Plantas , Hojas de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/análisis , Azúcares/análisis
3.
J Exp Bot ; 71(20): 6429-6443, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32777073

RESUMEN

Nitrogen (N) fertilizer maximizes the growth of oilseed rape (Brassica napus L.) by improving photosynthetic performance. Elucidating the dynamic relationship between fluorescence and plant N status could provide a non-destructive diagnosis of N status and the breeding of N-efficient cultivars. The aim of this study was to explore the impacts of different N treatments on photosynthesis at a spatial-temporal scale and to evaluate the performance of three fluorescence techniques for the diagnosis of N status. One-way ANOVA and linear discriminant analysis were applied to analyze fluorescence data acquired by a continuous excitation chlorophyll fluorimeter (OJIP transient analysis), pulse amplitude-modulated chlorophyll fluorescence (PAM-ChlF), and multicolor fluorescence (MCF) imaging. The results showed that the maximum quantum efficiency of PSII photochemistry (Fv/Fm) and performance index for photosynthesis (PIABS) of bottom leaves were sensitive to N status at the bolting stage, whereas the red fluorescence/far-red fluorescence ratio of top leaves was sensitive at the early seedling stage. Although the classification of N treatments by the three techniques achieved comparable accuracies, MCF imaging showed the best potential for early diagnosis of N status in field phenotyping because it had the highest sensitivity in the top leaves, at the early seedling stage. The findings of this study could facilitate research on N management and the breeding of N-efficient cultivars.


Asunto(s)
Brassica napus , Clorofila , Fluorescencia , Nitrógeno , Fotosíntesis , Fitomejoramiento , Hojas de la Planta
4.
Sensors (Basel) ; 20(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098377

RESUMEN

Spectral imaging is a promising technique for detecting the quality of rice seeds. However, the high cost of the system has limited it to more practical applications. The study was aimed to develop a low-cost narrow band multispectral imaging system for detecting rice false smut (RFS) in rice seeds. Two different cultivars of rice seeds were artificially inoculated with RFS. Results have demonstrated that spectral features at 460, 520, 660, 740, 850, and 940 nm were well linked to the RFS. It achieved an overall accuracy of 98.7% with a false negative rate of 3.2% for Zheliang, and 91.4% with 6.7% for Xiushui, respectively, using the least squares-support vector machine. Moreover, the robustness of the model was validated through transferring the model of Zheliang to Xiushui with the overall accuracy of 90.3% and false negative rate of 7.8%. These results demonstrate the feasibility of the developed system for RFS identification with a low detecting cost.


Asunto(s)
Oryza/fisiología , Semillas/fisiología , Análisis de los Mínimos Cuadrados , Máquina de Vectores de Soporte
5.
Molecules ; 25(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906599

RESUMEN

The purpose of this study was to establish an extraction method for the kinsenoside compound from the whole plant Anoectochilus roxburghii. Ultrasound assisted extraction (UAE) and Ultra-high performance liquid chromatography (UPLC) method were used to extract and determine the content of kinsenoside, while response surface method (RSM) was used to optimize the extraction process. The best possible range for methanol concentration (0-100%), the liquid-solid ratio (5:1-30:1 mL/g), ultrasonic power (240-540 W), duration of ultrasound (10-50 min), ultrasonic temperature (10-60 °C), and the number of extractions (1-4) were obtained according to the single factor experiments. Then, using the Box-Behnken design (BBD) of response surface analysis, the optimum extraction conditions were obtained with 16.33% methanol concentration, the liquid-solid ratio of 10.83:1 mL/g and 35.00 °C ultrasonic temperature. Under these conditions, kinsenoside extraction yield reached 32.24% dry weight. The best conditions were applied to determine the kinsenoside content in seven different cultivation ages in Anoectochilus roburghii.


Asunto(s)
4-Butirolactona/análogos & derivados , Monosacáridos/química , Orchidaceae/química , Ultrasonido , 4-Butirolactona/química , Cromatografía Líquida de Alta Presión , Temperatura
6.
Plant Physiol ; 176(3): 2543-2556, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431629

RESUMEN

Lipopolysaccharides (LPS) are major components of the outer membrane of gram-negative bacteria and are an important microbe-associated molecular pattern (MAMP) that triggers immune responses in plants and animals. A previous genetic screen in Arabidopsis (Arabidopsis thaliana) identified LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE), a B-type lectin S-domain receptor kinase, as a sensor of LPS. However, the LPS-activated LORE signaling pathway and associated immune responses remain largely unknown. In this study, we found that LPS trigger biphasic production of reactive oxygen species (ROS) in Arabidopsis. The first transient ROS burst was similar to that induced by another MAMP, flagellin, whereas the second long-lasting burst was induced only by LPS. The LPS-triggered second ROS burst was found to be conserved in a variety of plant species. Microscopic observation of the generation of ROS revealed that the LPS-triggered second ROS burst was largely associated with chloroplasts, and functional chloroplasts were indispensable for this response. The lipid A moiety, the most conserved portion of LPS, appears to be responsible for the second ROS burst. Surprisingly, the LPS- and lipid A-triggered second ROS burst was only partially dependent on LORE. Together, our findings provide insight on the LPS-triggered ROS production and the associated signaling pathway.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lípido A/farmacología , Mutación , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Pseudomonas syringae/patogenicidad , Factores de Transcripción/genética
7.
Chemosphere ; 353: 141657, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452978

RESUMEN

In order to explore the effects of micro-nano bubble water (MNBW) on compost maturation and the microbial community in cow manure and straw during aerobic composting, we conducted composting tests using tap water with 12 mg/L (O12), 15 mg/L (O15), 18 mg/L (O18), and 21 mg/L (O21) dissolved oxygen in MNBW, as well as tap water with 9 mg/L dissolved oxygen as a control (CK). The results showed that O21 increased the maximum compost temperature to 64 °C, which was higher than the other treatments. All treatments met the harmless standards for compost. The seed germination index (GI) was largest under O21 and 15.1% higher than that under CK, and the non-toxic compost degree was higher. Redundancy analysis showed that the temperature, C/N, pH, and GI were important factors that affected the microbial community composition. The temperature, C/N, and pH were significantly positively correlated with Firmicutes and Actinobacteria (p < 0.05). Firmicutes was the dominant phylum in the mesophilic stage (2-6 days) and it accounted for a large proportion under O21, where the strong thermophilic metabolism increased the production of heat and prolonged the high temperature period. The bacterial genus Ammoniibacillus in Firmicutes accounted for a large proportion under O21 and it accelerated the decomposition of substrates. Therefore, the addition of MNBW changed the microbial community to affect the maturation of the compost, and the quality of the compost was higher under O21.


Asunto(s)
Compostaje , Microbiota , Animales , Bovinos , Femenino , Nitrógeno/análisis , Bacterias/metabolismo , Firmicutes , Estiércol/microbiología , Oxígeno , Suelo
8.
Plant Phenomics ; 6: 0180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779576

RESUMEN

The last decades have witnessed a rapid development of noninvasive plant phenotyping, capable of detecting plant stress scale levels from the subcellular to the whole population scale. However, even with such a broad range, most phenotyping objects are often just concerned with leaves. This review offers a unique perspective of noninvasive plant stress phenotyping from a multi-organ view. First, plant sensing and responding to abiotic stress from the diverse vegetative organs (leaves, stems, and roots) and the interplays between these vital components are analyzed. Then, the corresponding noninvasive optical phenotyping techniques are also provided, which can prompt the practical implementation of appropriate noninvasive phenotyping techniques for each organ. Furthermore, we explore methods for analyzing compound stress situations, as field conditions frequently encompass multiple abiotic stressors. Thus, our work goes beyond the conventional approach of focusing solely on individual plant organs. The novel insights of the multi-organ, noninvasive phenotyping study provide a reference for testing hypotheses concerning the intricate dynamics of plant stress responses, as well as the potential interactive effects among various stressors.

9.
Plant Phenomics ; 5: 0125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076280

RESUMEN

Salt stress is considered one of the primary threats to cotton production. Although cotton is found to have reasonable salt tolerance, it is sensitive to salt stress during the seedling stage. This research aimed to propose an effective method for rapidly detecting salt stress of cotton seedlings using multicolor fluorescence-multispectral reflectance imaging coupled with deep learning. A prototyping platform that can obtain multicolor fluorescence and multispectral reflectance images synchronously was developed to get different characteristics of each cotton seedling. The experiments revealed that salt stress harmed cotton seedlings with an increase in malondialdehyde and a decrease in chlorophyll content, superoxide dismutase, and catalase after 17 days of salt stress. The Relief algorithm and principal component analysis were introduced to reduce data dimension with the first 9 principal component images (PC1 to PC9) accounting for 95.2% of the original variations. An optimized EfficientNet-B2 (EfficientNet-OB2), purposely used for a fixed resource budget, was established to detect salt stress by optimizing a proportional number of convolution kernels assigned to the first convolution according to the corresponding contributions of PC1 to PC9 images. EfficientNet-OB2 achieved an accuracy of 84.80%, 91.18%, and 95.10% for 5, 10, and 17 days of salt stress, respectively, which outperformed EfficientNet-B2 and EfficientNet-OB4 with higher training speed and fewer parameters. The results demonstrate the potential of combining multicolor fluorescence-multispectral reflectance imaging with the deep learning model EfficientNet-OB2 for salt stress detection of cotton at the seedling stage, which can be further deployed in mobile platforms for high-throughput screening in the field.

10.
Plants (Basel) ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960032

RESUMEN

Rice blast has caused major production losses in rice, and thus the early detection of rice blast plays a crucial role in global food security. In this study, a semi-supervised contrastive unpaired translation iterative network is specifically designed based on unmanned aerial vehicle (UAV) images for rice blast detection. It incorporates multiple critic contrastive unpaired translation networks to generate fake images with different disease levels through an iterative process of data augmentation. These generated fake images, along with real images, are then used to establish a detection network called RiceBlastYolo. Notably, the RiceBlastYolo model integrates an improved fpn and a general soft labeling approach. The results show that the detection precision of RiceBlastYolo is 99.51% under intersection over union (IOU0.5) conditions and the average precision is 98.75% under IOU0.5-0.9 conditions. The precision and recall rates are respectively 98.23% and 99.99%, which are higher than those of common detection models (YOLO, YOLACT, YOLACT++, Mask R-CNN, and Faster R-CNN). Additionally, external data also verified the ability of the model. The findings demonstrate that our proposed model can accurately identify rice blast under field-scale conditions.

11.
Plants (Basel) ; 12(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37111921

RESUMEN

Non-destructive plant stress phenotyping begins with traditional one-dimensional (1D) spectroscopy, followed by two-dimensional (2D) imaging, three-dimensional (3D) or even temporal-three-dimensional (T-3D), spectral-three-dimensional (S-3D), and temporal-spectral-three-dimensional (TS-3D) phenotyping, all of which are aimed at observing subtle changes in plants under stress. However, a comprehensive review that covers all these dimensional types of phenotyping, ordered in a spatial arrangement from 1D to 3D, as well as temporal and spectral dimensions, is lacking. In this review, we look back to the development of data-acquiring techniques for various dimensions of plant stress phenotyping (1D spectroscopy, 2D imaging, 3D phenotyping), as well as their corresponding data-analyzing pipelines (mathematical analysis, machine learning, or deep learning), and look forward to the trends and challenges of high-performance multi-dimension (integrated spatial, temporal, and spectral) phenotyping demands. We hope this article can serve as a reference for implementing various dimensions of non-destructive plant stress phenotyping.

12.
Plant Sci ; 330: 111660, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36822504

RESUMEN

The planting of salt-tolerant plants is regarded as the one of important measurements to improve the saline-alkali lands. The outstanding biological properties of JUNCAOs have made them candidates to improve and utilize saline-alkali lands. At present, little attention has been paid to developing a non-destructive and high throughput approach to evaluate the salt tolerance of JUNCAO. To close the gaps, three typical JUNCAOs (A.donax. No.1, A.donax. No.5 and A.donax. No.10) were evaluated by combining prompt chlorophyll a fluorescence (ChlF) with hyperspectral spectroscopy (HS). The results showed that salt stress reduced relative stem growth, water content, and total chlorophyll content but enhanced the malondialdehyde (MDA) content. It caused a significant change in chlorophyll a fluorescence kinetics with an appearance of L-, K- and J-band, implying damaging energetic connectivity between PSII units, uncoupling of the oxygen evolving complex (OEC) and inhibition of the QA-reoxidation. The negative impact of salt stress on JUNCAOs increased with the increasing level of salt concentration. Effect on spectral reflectance in the in the visible region with shifts on red edge position (REP) and blue edge position (BEP) to shorter wavelength was also found in salt stress plants. Combining principal component analysis (PCA) with the membership function method based on spectral indices and JIP-test parameters could well screen JUNCAOs salt tolerant ability with the highest for A.donax. NO.10 but lowest for A.donax. NO.1, which was the same as that of using conventional approach. The results demonstrate that prompt ChlF coupling with HS could provide potentials for non-invasively and high-throughput phenotyping salt tolerance in JUNCAOs.


Asunto(s)
Clorofila , Tolerancia a la Sal , Clorofila A , Fluorescencia , Clorofila/análisis , Estrés Salino , Análisis Espectral
13.
Food Chem ; 299: 125121, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310915

RESUMEN

White shrimp (Litopenaeus vannamei) raised in low-salinity farm are considered inferior to those in seawater. In order to develop a rapid discrimination method for the food industry, we investigated the potential of using near-infrared hyperspectral imaging to discriminate shrimp muscle samples from freshwater and seawater farms. We constructed 3 different discrimination models with 4 optimal wavelength selection methods and compared the performance of each model. The results showed that sequential forward selection combined with partial least squares discriminant analysis (SFS-PLS-DA) generated the best discrimination performance with an overall accuracy of 99.2%. The elemental and isotopic analysis indicated a high correlation between 918 and 925 nm region (which was selected by SFS) and 13C concentration. This agrees with the fact that there is more 13C in shrimp of salty water compared to those of freshwater. The results demonstrated (hyperspectral imaging) HSI is promising to discriminate L. vannamei raised in fresh and seawater environments.


Asunto(s)
Penaeidae/fisiología , Animales , Isótopos de Carbono/análisis , Granjas , Estudios de Factibilidad , Salinidad , Agua de Mar
14.
Sci Total Environ ; 659: 1021-1031, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096318

RESUMEN

Monitoring the effectiveness of Miscanthus sacchariflorus to meet the basic requirements for environmental remediation projects is an important step in determining its use as a productive bioenergy crop for phytoremediation. Conventional chemical methods for the determination of cadmium (Cd) contents involve time-consuming, monotonous and destructive procedures and are not suitable for high-throughput screening. In the present study, visible and near-infrared hyperspectral imaging technology combined with chemometric methods was used to assess the Cd concentrations in M. sacchariflorus. The total Cd concentrations in different plant tissues were measured using an inductively coupled plasma-mass spectrometer. Partial least-squares regression and least-squares support vector machine were implemented to estimate Cd contents from spectral reflectance. Successive projections algorithm and competitive adaptive reweighted sampling (CARS) methodology were used for selecting optimal wavelength. The CARS-partial least-squares regression model resulted in the most accurate predictions of Cd contents in M. sacchariflorus leaves, with a determination coefficient (R2) of 0.87 and a root mean square error (RMSE) value of 97.78 for the calibration set, and an R2 value of 0.91 and a RMSE value of 75.95 for the prediction set. The CARS-least-squares support vector machine model resulted in the most satisfactory predictions of Cd contents in roots, with R2 values of 0.95 (RMSE, 0.92 × 103) for the calibration set and 0.90 (RMSE, 1.64 × 103) for the prediction set. Finally, the Cd concentrations in different plant tissues were visualized on the prediction maps by predicted spectral features on each hyperspectral image pixel. Thus, visible and near-infrared imaging combined with chemometric methods produces a promising technique to evaluate M. sacchariflorus' Cd phytoremediation capability in high-throughput metal-contaminated field applications.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente/métodos , Poaceae/química , Contaminantes del Suelo/análisis , Algoritmos , Biodegradación Ambiental , Restauración y Remediación Ambiental , Análisis de los Mínimos Cuadrados , Hojas de la Planta , Raíces de Plantas , Máquina de Vectores de Soporte
15.
Plant Methods ; 15: 32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972143

RESUMEN

BACKGROUND: Unmanned aerial vehicle (UAV)-based remote sensing provides a flexible, low-cost, and efficient approach to monitor crop growth status at fine spatial and temporal resolutions, and has a high potential to accelerate breeding process and improve precision field management. METHOD: In this study, we discussed the use of lightweight UAV with dual image-frame snapshot cameras to estimate aboveground biomass (AGB) and panicle biomass (PB) of rice at different growth stages with different nitrogen (N) treatments. The spatial-temporal variations in the typical vegetation indices (VIs) and AGB were first investigated, and the accuracy of crop surface model (CSM) extracted from the Red Green Blue (RGB) images at two different stages were also evaluated. Random forest (RF) model for AGB estimation as well as the PB was then developed. Furthermore, variable importance and sensitivity analysis of UAV variables were performed to study the potential of improving model robustness and prediction accuracies. RESULTS: It was found that the canopy height extracted from the CSM (Hcsm) exhibited a high correlation with the ground-measured canopy height, while it was unsuitable to be independently used for biomass assessment of rice during the entire growth stages. We also observed that several VIs were highly correlated with AGB, and the modified normalized difference spectral index extracted from the multispectral image achieved the highest correlation. RF model with fusing RGB and multispectral image data substantially improved the prediction results of AGB and PB with the prediction of root mean square error (RMSEP) reduced by 8.33-16.00%. The best prediction results for AGB and PB were achieved with the coefficient of determination (r2), the RMSEP and relative RMSE (RRMSE) of 0.90, 0.21 kg/m2 and 14.05%, and 0.68, 0.10 kg/m2 and 12.11%, respectively. In addition, the result confirmed that the sensitivity analysis could simplify the prediction model without reducing the prediction accuracy. CONCLUSION: These findings demonstrate the feasibility of applying lightweight UAV with dual image-frame snapshot cameras for rice biomass estimation, and its potential for high throughput analysis of plant growth-related traits in precision agriculture as well as the advanced breeding program.

16.
Plant Methods ; 15: 54, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139243

RESUMEN

BACKGROUND: The advances of hyperspectral technology provide a new analytic means to decrease the gap of phenomics and genomics caused by the fast development of plant genomics with the next generation sequencing technology. Through hyperspectral technology, it is possible to phenotype the biochemical attributes of rice seeds and use the data for GWAS. RESULTS: The results of correlation analysis indicated that Normalized Difference Spectral Index (NDSI) had high correlation with protein content (PC) with RNDSI 2 = 0.68. Based on GWAS analysis using all the traits, NDSI was able to identify the same SNP loci as rice protein content that was measured by traditional methods. In total, hyperspectral trait NDSI identified all the 43 genes that were identified by biochemical trait PC. NDSI identified 1 extra SNP marker on chromosome 1, which annotated extra 22 genes that were not identified by PC. Kegg annotation results showed that traits NDSI annotated 3 pathways that are exactly the same as PC. The cysteine and methionine metabolic pathway identified by both NDSI and PC was reported important for biosynthesis and metabolism of some of amino acids/protein in rice seeds. CONCLUSION: This study combined hyperspectral technology and GWAS analysis to dissect PC of rice seeds, which was high throughput and proven to be able to apply to GWAS as a new phenotyping tool. It provided a new means to phenotype one of the important biochemical traits for the determination of rice quality that could be used for genetic studies.

17.
Front Plant Sci ; 9: 603, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868063

RESUMEN

Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising phenotyping technique that allows early detection of plant drought stress.

18.
Int J Anal Chem ; 2017: 6018769, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28932243

RESUMEN

Hyperspectral imaging (HSI) technology has increasingly been applied as an analytical tool in fields of agricultural, food, and Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables) that contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy. In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA), loading weights (LW), regression coefficients (RC), uninformative variable elimination (UVE), UVE-SPA, competitive adaptive reweighted sampling (CARS), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), and genetic algorithms (GA-PLS). One linear technique (partial least squares-discriminant analysis) was established for the evaluation of identification. And a nonlinear calibration model, support vector machine (SVM), was also provided for comparison. The results indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles in the multivariate analysis, which can be used for subsequent modeling analysis.

19.
Front Plant Sci ; 8: 1509, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900440

RESUMEN

Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

20.
Ying Yong Sheng Tai Xue Bao ; 26(2): 419-24, 2015 Feb.
Artículo en Zh | MEDLINE | ID: mdl-26094455

RESUMEN

This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.


Asunto(s)
Ionización del Aire , Electricidad , Fenómenos Fisiológicos de las Plantas , Iones , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA